Levenshtein Distance

The Levenshtein distance is a string metric for measuring the difference between two sequences. Informally, the Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

Example

For example, the Levenshtein distance between kitten and sitting is 3, since the following three edits change one into the other, and there is no way to do it with fewer than three edits:

  1. kitten → sitten (substitution of "s" for "k")
  2. sitten → sittin (substitution of "i" for "e")
  3. sittin → sitting (insertion of "g" at the end)

思路:

Let’s take a simple example of finding minimum edit distance between strings ME and MY. Intuitively you already know that minimum edit distance here is 1 operation and this operation. And it is replacing E with Y. But let’s try to formalize it in a form of the algorithm in order to be able to do more complex examples like transforming Saturday into Sunday.

To apply the mathematical formula mentioned above to ME → MY transformation we need to know minimum edit distances of ME → MM → MY and M → M transformations in prior. Then we will need to pick the minimum one and add one operation to transform last letters E → Y. So minimum edit distance of ME → MY transformation is being calculated based on three previously possible transformations.

To explain this further let’s draw the following matrix:

  • Cell (0:1) contains red number 1. It means that we need 1 operation to transform M to an empty string. And it is by deleting M. This is why this number is red.
  • Cell (0:2) contains red number 2. It means that we need 2 operations to transform ME to an empty string. And it is by deleting E and M.
  • Cell (1:0) contains green number 1. It means that we need 1 operation to transform an empty string to M. And it is by inserting M. This is why this number is green.
  • Cell (2:0) contains green number 2. It means that we need 2 operations to transform an empty string to MY. And it is by inserting Y and M.
  • Cell (1:1) contains number 0. It means that it costs nothing to transform M into M.
  • Cell (1:2) contains red number 1. It means that we need 1 operation to transform ME to M. And it is by deleting E.
  • And so on...

This looks easy for such small matrix as ours (it is only 3x3). But here you may find basic concepts that may be applied to calculate all those numbers for bigger matrices (let’s say a 9x7 matrix for Saturday → Sunday transformation).

According to the formula you only need three adjacent cells (i-1:j)(i-1:j-1), and (i:j-1) to calculate the number for current cell (i:j). All we need to do is to find the minimum of those three cells and then add 1 in case if we have different letters in i's row and j's column.如果等的话,找最小就好。

代码如下:

/**
* @param {string} a
* @param {string} b
* @return {number}
*/
export default function levenshteinDistance(a, b) {
// Create empty edit distance matrix for all possible modifications of
// substrings of a to substrings of b.
const distanceMatrix = Array(b.length + ).fill(null).map(() => Array(a.length + ).fill(null)); // Fill the first row of the matrix.
// If this is first row then we're transforming empty string to a.
// In this case the number of transformations equals to size of a substring.
for (let i = ; i <= a.length; i += ) {
distanceMatrix[][i] = i;
} // Fill the first column of the matrix.
// If this is first column then we're transforming empty string to b.
// In this case the number of transformations equals to size of b substring.
for (let j = ; j <= b.length; j += ) {
distanceMatrix[j][] = j;
} for (let j = ; j <= b.length; j += ) {
for (let i = ; i <= a.length; i += ) {
const indicator = a[i - ] === b[j - ] ? : ;
distanceMatrix[j][i] = Math.min(
distanceMatrix[j][i - ] + , // deletion
distanceMatrix[j - ][i] + , // insertion
distanceMatrix[j - ][i - ] + indicator, // substitution
);
}
} return distanceMatrix[b.length][a.length];
}

编辑距离算法-DP问题的更多相关文章

  1. 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...

  2. [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)

    转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...

  3. Levenshtein Distance算法(编辑距离算法)

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...

  4. 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  5. 字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录.据百度百科介绍:编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串 ...

  6. 自然语言处理(5)之Levenshtein最小编辑距离算法

    自然语言处理(5)之Levenshtein最小编辑距离算法 题记:之前在公司使用Levenshtein最小编辑距离算法来实现相似车牌的计算的特性开发,正好本节来总结下Levenshtein最小编辑距离 ...

  7. 编辑距离算法(Levenshtein)

    编辑距离定义: 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数. 许可的编辑操作包括:将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如 ...

  8. Java实现编辑距离算法

    Java实现编辑距离算法 编辑距离,又称Levenshtein距离(莱文斯坦距离也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它 ...

  9. Levenshtein distance 编辑距离算法

    这几天再看 virtrual-dom,关于两个列表的对比,讲到了 Levenshtein distance 距离,周末抽空做一下总结. Levenshtein Distance 介绍 在信息理论和计算 ...

随机推荐

  1. ruoyi LogUtils

    package com.ruoyi.framework.util; import java.io.PrintWriter; import java.io.StringWriter; import ja ...

  2. 黑马_13 Spring Boot:04.spring boot 配置文件

    13 Spring Boot: 01.spring boot 介绍&&02.spring boot 入门 04.spring boot 配置文件 05.spring boot 整合其他 ...

  3. Java类只加载一次的情况

    一个类只加载一次: 调用Java命令. 创建对象时 访问静态成员时 Class.forName("包名.类名")

  4. win10 python 3.7 pip install tensorflow

    环境: ide:pyCharm 2018.3.2 pyhton3.7 os:win10 64bit 步骤: 1.确认你的python有没有装pip,有则直接跳2.无则cmd到python安装目录下ea ...

  5. 【转载】解决Cannot download "https://github.com/sass/node-sass/releases/download...问题

    因很早做了一个小demo,并且在其他成熟的电脑上(node配置好的)下载依赖包没什么问题,最近就在新的电脑上配置好所有东西后,去下载这个demo的依赖包,就出现了node-sass无法正常解析的问题, ...

  6. js运算符相关要点

    取模运算的结果符号只与左边值的符号有关: var x = 7 % 3; // 结果为 1 var y = 7 % (-3); // 结果为 1 var z = (-7) % 3; // 结果为 -1

  7. VMware Horizon view 7安装视频教程

    1.教程介绍1.1::通过本教程起到抛砖引玉效果,希望各位喜爱VMware产品的朋友受益良多. 1.2::以下提供的任何软件仅供学习交流使用. 2.视频教程2.1::ESXI安装视频 链接:https ...

  8. Centos7安装Xrdp远程桌面

    Xrdp是Microsoft远程桌面协议RDP的一个开源实现,它允许以图像方式控制远程系统. 测试环境 服务端: CentOS Linux release 7.7.1908 (Core) 客户端: W ...

  9. 40)类与类之间的关系(has use is)

    1)类与类之间的关系  一般就是三类: ①has--A ②use--A ③is-----A ①has--A  包含关系,用以描述一个类由多个“部件构成”.实现has--A关系用类成员表示,  即一个类 ...

  10. python学习笔记(30)——ddt

    1.ddt模块包含类的装饰器ddt和两个方法装饰器data ddt.ddt:装饰类,也就是继承TestCase的类. ddt.data:装饰测试方法,参数是一系列的值,用来传递参数 ddt.file_ ...