CSDN同步

原题链接

简要题意:

给定一个 \(1\) ~ \(n\) 的排列,求以 \(b\) 为中位数的 连续子序列且长度为奇数 的个数。

显然这段序列包含 \(b\).

中位数的定义:排序后在最中间的数。

算法一

对于 \(30 \%\) 的数据,\(n \leq 100\).

由于这段序列一定包含 \(b\),那么我们可以枚举区间 \([i,j]\) 包含 \(b\)(有类似于双指针),然后单独取出 \([i,j]\) 这段进行排序,暴力判断即可。

时间复杂度:\(O(n^3 \log n)\).

实际得分:\(30pts\).

算法二

对于 \(60 \%\) 的数据,\(n \leq 1000\).

显然我们不需要每次都把 \([i,j]\) 这段取出,可以一次次扩展。

比方说枚举 \(i\) (从 \(d\) 到 \(1\),\(d\) 是 \(b\) 的位置),然后枚举 \(j\) 从 \(d\) 到 \(n\). 对于每个 \(j\),只需在原来数组的基础上添上一个 \(a_j\) 即可;如果 \(j=n\) 的话,添加之后要把数组清空。

那么每次只需要插入一个数的话,我们可以用 插入排序,因为已经排序的是有序的,因为插入的位置可以用二分算出。插入操作我们不用数组维护,用 \(\text{vector}\) 维护会方便很多。

时间复杂度:\(O(n^2 \log n)\).

实际得分:\(60pts\).

算法三

对于 \(60 \%\) 的数据,\(n \leq 1000\).

抛开排序过程,我们想:因为排列的性质,不存在重复数。所以,一个连续序列的中位数为 \(b\) 当且仅当比 \(b\) 大的数的个数和比 \(b\) 小的数的个数相等。 那么,对于 \(d\) 的左边,线性 \(\text{dp}\) ,用 \(f_i\) 表示 \(i\) ~ \(d\) 比 \(i\) 大的数的个数,\(g_i\) 是小的,同理 \(d\) 的右边也推一遍。

那么,我们枚举左右端点 \(i,j\) 只需要 \(O(1)\) 判断即可。即 \(f_i + g_i = f_j + g_j\).

时间复杂度:\(O(n^2)\).

实际得分:\(60pts\).

算法四

对于 \(60 \%\) 的数据,\(n \leq 1000\).

从算法三的 \(\text{dp}\) 上入手,我们发现,\(f_i + g_i = f_j + g_j\) 等价于 \(f_i - f_j = g_i - g_j\). 所以我们只需要算出 比 \(b\) 大的数的个数与比 \(b\) 小的数的个数之差 重新作为 \(f\) 数组的状态,然后枚举端点即可。

时间复杂度:\(O(n^2)\).

实际得分:\(60pts\).

算法五

对于 \(100 \%\) 的数据,\(n \leq 10^5\).

从算法四上再优化一下,其实对于固定的一个左端点 \(i\),我们只需要算出有多少个 \(j \geq d\) 且 \(f_i = f_j\) 即可。

也就是说,我们需要维护 区间查询相等个数

智商不够,数据结构来凑。所以这个查询我们可以用 \(\text{Treap}\) 或者 \(\text{Splay}\) 来实现。(随便用个平衡树板子都能实现的)

时间复杂度:\(O(n \log n)\).

实际得分:\(100pts\).

算法六

对于 \(100 \%\) 的数据,\(n \leq 10^5\).

从算法五上入手,你发现 区间查询相等个数 是静态查询,不需要修改。那你可以用 权值线段树(主席树) 解决本题。

时间复杂度:\(O(n \log n)\).

实际得分:\(100pts\).

算法七

对于 \(100 \%\) 的数据,\(n \leq 10^5\).

在算法六的基础上,你发现不仅是静态,而且是固定的一个区间 \([d,n]\). 那么我们不需要用 权值线段树(可以理解为 \(n\) 棵线段树),只需要 \(1\) 棵线段树即可。

时间复杂度:\(O(n \log n)\).

实际得分:\(100pts\).

算法八

对于 \(100 \%\) 的数据,\(n \leq 10^5\).

如果你的程序在算法七止步不前,只能说明你是个天才,离最后的成功只差几步了。

固定区间维护静态相等个数,听上去很高大上啊,其实不就是个 \(\text{map}\) 吗?

某同学:我还能 %$#^%*(%&))

嗯,改成 \(\text{map}\) 之后感觉简单多了,是不是?然后我们直接省去 \(f\) 数组,直接存入 \(\text{map}\).

时间复杂度:\(O(n \log n)\).

实际得分:\(100pts\).

//为了看起来清晰 , 用了嵌套三目运算符
// q[tot+=((a[i]>b)?1:(a[i]<b)?-1:0)]++; 其实相当于这几句:
// if(a[i]>b) tot++;
// if(a[i]<b) tot--;
// q[tot]++;
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int N=1e5+1; inline int read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;} int n,b,wz,a[N];
int tot,sum; ll ans=0;
map<int,int> q; int main(){
n=read(),b=read();
for(int i=1;i<=n;i++) a[i]=read(),wz=(a[i]==b)?i:wz;
for(int i=wz;i<=n;i++) q[tot+=((a[i]>b)?1:(a[i]<b)?-1:0)]++;
for(int i=wz;i>=1;i--) ans+=q[0-(sum+=(a[i]>b)?1:((a[i]<b)?-1:0))];
printf("%lld\n",ans);
return 0;
}

算法九

对于 \(200 \%\) 的数据,\(n \leq 10^7\).

(实际上是本人的一个加强)

算法八的基础上,我们可以尝试拿掉这个 \(\log\).

但是你很快发现下标虽然不超过 \(10^7\),但是会有负数,可能有 \(-10^7\).

显然,哈希处理负下标 是这题的最终正解。

把每个下标都加上 \(n\),解决负下标之后 \(O(1)\) 查询,拿掉 \(\text{map}\) 还解决了 \(\log\).

时间复杂度:\(O(n)\).

实际得分:\(200pts\).

P1627 [CQOI2009]中位数 题解的更多相关文章

  1. 洛谷 P1627 [CQOI2009]中位数 解题报告

    P1627 [CQOI2009]中位数 题目描述 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 输入输出格式 输入格式 ...

  2. 洛谷——P1627 [CQOI2009]中位数

    P1627 [CQOI2009]中位数 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 中位数的题目有关统计的话,可以转 ...

  3. luogu P1627 [CQOI2009]中位数

    传送门 要求有多少个长度为奇数的区间满足某个数为区间中位数 这样的区间,大于中位数的数个数 等于 小于中位数的数个数 用类似于前缀和的方法,设\(X_i\)为\(i\)和数\(b\)形成的区间内,大于 ...

  4. p1627 [CQOI2009]中位数

    传送门 分析 https://www.luogu.org/blog/user43145/solution-p1627 代码 #include<iostream> #include<c ...

  5. 【BZOJ1303】[CQOI2009]中位数图(模拟)

    [BZOJ1303][CQOI2009]中位数图(模拟) 题面 BZOJ 洛谷 题解 把大于\(b\)的数设为\(1\),小于\(b\)的数设为\(-1\).显然询问就是有多少个横跨了\(b\)这个数 ...

  6. bzoj 1303: [CQOI2009]中位数图 数学

    1303: [CQOI2009]中位数图 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  7. BZOJ 1303 CQOI2009 中位数图 水题

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2340  Solved: 1464[Submit][Statu ...

  8. BZOJ 1303: [CQOI2009]中位数图【前缀和】

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2737  Solved: 1698[Submit][Statu ...

  9. Luogu1627 [CQOI2009]中位数

    Luogu1627 [CQOI2009]中位数 给出一个 \(n\) 的排列,统计该排列有多少个长度为奇数的连续子序列的中位数是 \(k\) \(n\leq10^5\) \(trick\) :因为不需 ...

随机推荐

  1. H5系列一、静态页面总结

    1.img父标签设置高度,如果容器没有设置高度的话,图片会默认把容器底部撑大几像素 -- 大概3px,给容器设置高度. 2.input标记换行后默认有一个间隙,设置float属性.input标记默认还 ...

  2. 16 搭建Spring Data JPA的开发环境

    使用Spring Data JPA,需要整合Spring与Spring Data JPA,并且需要提供JPA的服务提供者hibernate,所以需要导入spring相关坐标,hibernate坐标,数 ...

  3. php不用第三个变量,交换两个数的值

    //字符串版本 结合使用substr,strlen两个方法实现 $a="a"; $b="b"; echo '交换前 $a:'.$a.',$b:'.$b.'< ...

  4. nginx显示静态html爆502 bad gateway的错误提示

    在centos的服务器上,没有启动php-fcgi. 本来是想设置显示一个静态文件目录的,用不着php,于是就关闭了php-fcgi. 结果打开爆了一个大大的nginx502 bad gateway的 ...

  5. tesseract的简单使用

    Tesseract 是一个开源的 OCR 引擎,可以识别多种格式的图像文件并将其转换成文本,最初由 HP 公司开发,后来由 Google 维护.下载地址:https://digi.bib.uni-ma ...

  6. MySQL 【教程二】

    MySQL 创建数据表 创建MySQL数据表需要以下信息: 表名 表字段名 定义每个表字段 语法 以下为创建MySQL数据表的SQL通用语法: # CREATE TABLE table_name (c ...

  7. centos下配置Nginx

    首先NGINX是一个高效的HTTP和反向代理的服务器,这里记录一下它的安装方式和文件结构方便以后查看.同时Linux系统具有灵活性,其他的东西可查看具体的官网信息:https://nginx.org/ ...

  8. 264. 丑数 II

    编写一个程序,找出第 n 个丑数. 丑数就是只包含质因数 2, 3, 5 的正整数. 示例: 输入: n = 10输出: 12解释: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 是前 ...

  9. C# 基础知识系列- 1 数据类型

    常见数据类型 C#的类型一般分为值类型.引用类型两大类型. 值类型的实例存放在栈中,引用类型会在栈中放置一个指针指向堆中的某一块内容. C#为我们内置了几个数据类型供我们使用: 关键词简写 对应的类全 ...

  10. 大数据安装之Kafka(用于实时处理的消息队列)

    一.安装部署kafka 1.集群规划 hadoop102                                 hadoop103                          hado ...