题目链接:https://vjudge.net/problem/Gym-101612L

知识点:  数学

题目大意:

  给一个数 \(n(1 \le n \le 10^{18})\),要求将 \(n\) 分解成 \(a^{p}(a+1)^{q}\),问有多少种分解方案。

解题思路:

  如果 \(n\) 可以表示成 \(2^{t}\) 的形式,则有无限种分解方案,因为此时 \(n\) 可以分解成 \(1^{p} \times 2^{t}\) 的形式,其中 \(p\) 可以为任意整数。

  接下来讨论有限种分解方案的情况。

  \(n=a^{p}(a+1)^{q}\) 中的 \(a\) 近似等于 \(\lfloor ^{p+q} \sqrt{n} \rfloor = \lfloor ^{r} \sqrt{n} \rfloor\),其中 \((1 \le r \le log_2(n) \le 64)\),用求出的近似的 \(a\) 和 \(a+1\) 去尝试分解 \(n\) 即可。

AC代码:

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
vector<vector<LL> > ans; void solve(LL n,LL a){//试分解函数
vector<LL> ret;
while(n%a==){
ret.push_back(a);
n/=a;
}
while(n%(a+)==){
ret.push_back(a+);
n/=(a+);
}
if(n==){
ans.push_back(ret);
}
}
int main(){
freopen("little.in", "r", stdin);
freopen("little.out", "w", stdout);
LL n;
scanf("%lld",&n);
if((n&(n-))==){ //判断 n 是否是 1<<x 的形式的数
printf("-1\n");
return ;
} solve(n,n);
for(int s=;s<=;s++){
LL r=(LL)pow(n,1.0/(double)s);
for(int j=-;j<=;j++){
if(r+j>)
solve(n,r+j);
}
}
sort(ans.begin(),ans.end());
ans.erase(unique(ans.begin(),ans.end()),ans.end()); //去重 printf("%d\n",ans.size());
for(int i=;i<ans.size();i++){
printf("%d",ans[i].size());
for(int j=;j<ans[i].size();j++){
printf(" %lld",ans[i][j]);
}
printf("\n");
}
return ;
}

  

Gym101612L Little Difference的更多相关文章

  1. Java 堆内存与栈内存异同(Java Heap Memory vs Stack Memory Difference)

    --reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ...

  2. What's the difference between a stub and mock?

    I believe the biggest distinction is that a stub you have already written with predetermined behavio ...

  3. [转载]Difference between <context:annotation-config> vs <context:component-scan>

    在国外看到详细的说明一篇,非常浅显透彻.转给国内的筒子们:-) 原文标题: Spring中的<context:annotation-config>与<context:componen ...

  4. What's the difference between <b> and <strong>, <i> and <em> in HTML/XHTML? When should you use each?

    ref:http://stackoverflow.com/questions/271743/whats-the-difference-between-b-and-strong-i-and-em The ...

  5. difference between forward and sendredirect

    Difference between SendRedirect and forward is one of classical interview questions asked during jav ...

  6. Add Digits, Maximum Depth of BinaryTree, Search for a Range, Single Number,Find the Difference

    最近做的题记录下. 258. Add Digits Given a non-negative integer num, repeatedly add all its digits until the ...

  7. MySQL: @variable vs. variable. Whats the difference?

    MySQL: @variable vs. variable. Whats the difference?   up vote351down votefavorite 121 In another qu ...

  8. Distribute numbers to two “containers” and minimize their difference of sum

    it can be solved by Dynamical Programming.Here are some useful link: Tutorial and Code: http://www.c ...

  9. difference between append and appendTo

    if you need append some string to element and need set some attribute on these string at the same ti ...

随机推荐

  1. mysql-管理命令【创建用户、授权、修改密码、删除用户和授权、忘记root密码】

    一.创建用户 命令: CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 关键参数说明: username - 创建登录用户名, host ...

  2. AndroidStudio提高编译速度的建议

    1.使用最新的Android gradle插件 Google tools team一直致力于提高android studio的编译速度,使用最新的gradle插件可以搞编译速度 在Android Gr ...

  3. CF1324 --- Maximum White Subtree

    CF1324 --- Maximum White Subtree 题干 You are given a tree consisting of \(n\) vertices. A tree is a c ...

  4. SpringBoot内置生命周期事件详解 SpringBoot源码(十)

    SpringBoot中文注释项目Github地址: https://github.com/yuanmabiji/spring-boot-2.1.0.RELEASE 本篇接 SpringBoot事件监听 ...

  5. 深入实践Spring Boot1.4 运行与发布

    1.4 运行与发布 本章实例工程的完整代码可以使用IDEA直接从GitHub的https://github.com/chen-fromsz/spring-boot-hello.git中检出,如图1-1 ...

  6. 图论--树的重心(DFS) 模板

    const int maxn=500005; int tot=0,n; int ans,size; int sx[maxn],head[maxn]; int vis[maxn]; struct edg ...

  7. 疯子的算法总结(七) 字符串算法之 manacher 算法 O(N)解决回文串

    有点像DP的思想,写写就会做. #include<bits/stdc++.h> using namespace std; const int maxn=1e7+5; char a[maxn ...

  8. DVWA-对Command Injection(命令注入)的简单演示与分析

    前言 上一篇文章中,对命令注入进行了简单的分析,有兴趣的可以去看一看,文章地址 https://www.cnblogs.com/lxfweb/p/12828754.html,今天这篇文章以DVWA的C ...

  9. 更安全的rm命令,保护重要数据

    更安全的rm命令,保护重要数据 网上流传的安全的rm,几乎都是提供一个rm的"垃圾"回收站,在服务器环境上来说,这实非良方. 我想,提供一个安全的rm去保护一些重要的文件或目录不被 ...

  10. win7 64位系统使用vs2010编译OSG3.2.1

    首先我想说的是,osg是有二进制安装包的:http://openscenegraph.alphapixel.com/osg/downloads/free-openscenegraph-binary-d ...