Looooops(求解同余方程、同余方程用法)【拓展欧几里得】
Looooops(点击)
A Compiler Mystery: We are given a C-language style for loop of type
for (variable = A; variable != B; variable += C)
statement;
I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2 k) modulo 2 k.
Input
The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2 k) are the parameters of the loop.
The input is finished by a line containing four zeros.
Output
The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate.
Sample Input
3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0
Sample Output
0
2
32766
FOREVER
思路:
题目搁了两天,开始想了个很复杂的方法,花了好长时间调试结果TLE
后来实在没办法去搜了一下,才知道是用同余方程 解决
根据题目可以列出一个方程式,将加c的次数设成x:
∵ a+cx≡b(%mod);
∴ a+c*x+mod*y=b;
∴ c*x+mod*y=b-a;
根据exgcd可以求解 同时好要求出最小整数x的解就是结果
代码:
#include<stdio.h>
typedef long long LL;
LL GCD;
LL exgcd(LL a,LL b,LL &x,LL &y) // 拓展欧几里得求x、y特解
{
if(!b){
x=1;y=0;return a;
}
GCD=exgcd(b,a%b,y,x);
y-=a/b*x;
return GCD;
}
LL qpow(LL c,LL q) // 快速幂 因为题目涉及求2^k 如果用pow可能会出错
{
LL ans=1; //快速幂里面不需要%mod 和mod没有关系 不需要担心快速幂结果会超过2^k
while(q){
if(q%2){
ans*=c;
}
c*=c;
q/=2;
}
return ans;
}
int main()
{
LL a,b,c,k,x,y,t;
while(scanf("%lld%lld%lld%lld",&a,&b,&c,&k)!=EOF){
if(a==0&&b==0&&c==0&&k==0){
break;
}
else{
GCD=exgcd(c,qpow(2,k),x,y); //将 c、mod=2^k、x、y 依次带入拓展欧几里得方程求解
if((b-a)%GCD){
printf("FOREVER\n"); // 判断方程是否有解
}
else{
x*=((b-a)/GCD); //类似求解ax+by=c最小整数解的方法 得出最小x的值
t=qpow(2,k)/GCD; //因为求x所以t=b/GCD 但这个b并不是输入的b 而是 方程里面对应
if(t<0){ 的b 即 qpow(2,k)
t=-t;
}
x=(x%t+t)%t;
printf("%lld\n",x); //输出结果x
}
}
}
return 0;
}
Looooops(求解同余方程、同余方程用法)【拓展欧几里得】的更多相关文章
- 【lydsy1407】拓展欧几里得求解不定方程+同余方程
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407 题意: 有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i] ...
- [POJ2115]C Looooops 拓展欧几里得
原题入口 这个题要找到本身的模型就行了 a+c*x=b(mod 2k) -> c*x+2k*y=b-a 求这个方程对于x,y有没有整数解. 这个只要学过拓展欧几里得(好像有的叫扩展欧几里德QA ...
- ACM数论-欧几里得与拓展欧几里得
ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...
- Vulnerable Kerbals CodeForces - 772C【拓展欧几里得建图+DAG上求最长路】
根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$ 和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ ...
- HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)
设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x ...
- POJ 2891 Strange Way to Express Integers(拓展欧几里得)
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...
- BZOJ-1407 Savage 枚举+拓展欧几里得(+中国剩余定理??)
zky学长实力ACM赛制测试,和 大新闻(YveH) 和 华莱士(hjxcpg) 组队...2h 10T,开始 分工我搞A,大新闻B,华莱士C,于是开搞: 然而第一题巨鬼畜,想了40min发现似乎不可 ...
- [zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)
Power of Fibonacci Time Limit: 5 Seconds Memory Limit: 65536 KB In mathematics, Fibonacci numbe ...
- 51 Nod 1256 乘法逆元(数论:拓展欧几里得)
1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K ...
随机推荐
- 【Nginx】centos7 yum命令安装nginx
安装nginx 首先我们需要使用root用户进行操作 第一步:添加nginx存储库 sudo yum install epel-release 出现如下图说明成功: 第二步:安装nginx sudo ...
- 模板:JSP公共内容
page页面标签指令 <%@ page %> taglib标准标签指令 <%@ taglib %> 标签内基本属性 language="设置JSP页面使用的语言&qu ...
- Spring Boot 教程 (4) - swagger-ui
Spring Boot 教程 - swagger-ui 1. 什么是Swagger? Swagger™的目标是为REST APIs 定义一个标准的,与语言无关的接口,使人和计算机在看不到源码或者看不到 ...
- C# 数据操作系列 - 15 SqlSugar 增删改查详解
0. 前言 继上一篇,以及上上篇,我们对SqlSugar有了一个大概的认识,但是这并不完美,因为那些都是理论知识,无法描述我们工程开发中实际情况.而这一篇,将带领小伙伴们一起试着写一个能在工程中使用的 ...
- Java——Json字符串与Object互转
public static void JacksonTest() {//推荐 //{"MNG001":[{"ID":"1","PW ...
- ubuntu 基本操作
一 :下载文件操作 wge 下载地址 解压命令: tar
- pytest跳过指定的测试或模块
参考Allure官方文档,pytest官方文档 实现setup/teardown 1.运行带指定标记的测试 @pytest.mark.tags ,这里的tags可以自定义 命令行执行:pytest - ...
- 了解Lombok插件
Lombok是什么 Lombok可以通过注解形式帮助开发人员解决POJO冗长问题,帮助构造简洁和规范的代码,通过注解可产生相应的方法. Lombok如何在IDEA中使用 我们都知道,使用一种工具,一定 ...
- SpringBoot打包Docker镜像
构建spring boot项目 本地测试访问 打成jar包 在本地运行jar包测试 到这一步就证明jar包没问题 idea下载一个插件 在这创建一个Dockerfile文件 安装插件后会高亮显示. 在 ...
- MySQL 5.7.30 的安装/升级(所有可能的坑都在这里)
楔子 由于之前电脑上安装的MySQL版本是比较老的了,大概是5.1的版本,不支持JSON字段功能.而最新开发部门开发的的编辑器产品,使用到了JSON字段的功能. 因此需要升级MySQL版本,升级的目标 ...