图论--网络流--最大流--POJ 1698 Alice's Chance
Description
Alice, a charming girl, have been dreaming of being a movie star for long. Her chances will come now, for several filmmaking companies invite her to play the chief role in their new films. Unfortunately, all these companies will start making the films at the same time, and the greedy Alice doesn't want to miss any of them!! You are asked to tell her whether she can act in all the films.
As for a film,
- it will be made ONLY on some fixed days in a week, i.e., Alice can only work for the film on these days;
- Alice should work for it at least for specified number of days;
- the film MUST be finished before a prearranged deadline.
For example, assuming a film can be made only on Monday, Wednesday and Saturday; Alice should work for the film at least for 4 days; and it must be finished within 3 weeks. In this case she can work for the film on Monday of the first week, on Monday and Saturday of the second week, and on Monday of the third week.
Notice that on a single day Alice can work on at most ONE film.
Input
The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case begins with a single line containing an integer N (1 <= N <= 20), the number of films. Each of the following n lines is in the form of "F1 F2 F3 F4 F5 F6 F7 D W". Fi (1 <= i <= 7) is 1 or 0, representing whether the film can be made on the i-th day in a week (a week starts on Sunday): 1 means that the film can be made on this day, while 0 means the opposite. Both D (1 <= D <= 50) and W (1 <= W <= 50) are integers, and Alice should go to the film for D days and the film must be finished in W weeks.
Output
For each test case print a single line, 'Yes' if Alice can attend all the films, otherwise 'No'.
Sample Input
2
2
0 1 0 1 0 1 0 9 3
0 1 1 1 0 0 0 6 4
2
0 1 0 1 0 1 0 9 4
0 1 1 1 0 0 0 6 2
Sample Output
Yes
No
Hint
A proper schedule for the first test case: date Sun Mon Tue Wed Thu Fri Sat week1 film1 film2 film1 film1 week2 film1 film2 film1 film1 week3 film1 film2 film1 film1 week4 film2 film2 film2
构图:
0号节点表源点S, 1-350号节点表示每一天(因为最多只有50周),然后350+1到350+N表示这N部电影. 351+N号节点是汇点.
源点到每部电影i有边(s, i, Di). Di表示这部电影需要拍多少天.
每天j到汇点t有边(j, t, 1).,如果电影i能在第j天拍摄,那么从i到j有边(i,j,1).然后求最大流是否满流!
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=400+5;
struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
};
struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;i++) G[i].clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x= Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a)
{
if(x==t || a==0)return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a-=f;
if(a==0) break;
}
}
return flow;
}
int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans+=DFS(s,INF);
}
return ans;
}
}DC;
int n,day_sum;//电影数,总共需要天数
int src,dst;
int can[20+5][7];//can[i][j] 表示第i部电影在一周的第j+1天是否可以拍摄
int need[20+5];
int week[20+5];
int main()
{
int T; scanf("%d",&T);
while(T--)
{
day_sum=0;
scanf("%d",&n);
src=0,dst=350+n+1;
DC.init(350+n+2,src,dst);
for(int i=1;i<=n;i++)
{
for(int j=0;j<7;j++) scanf("%d",&can[i][j]);
scanf("%d%d",&need[i],&week[i]);
DC.AddEdge(src,350+i,need[i]);
day_sum += need[i];
}
for(int i=1;i<=350;i++)//i表每一天
{
DC.AddEdge(i,dst,1);
for(int j=1;j<=n;j++)if(can[j][i%7]==1 && (i-1)/7<week[j])
{
DC.AddEdge(j+350,i,1);
}
}
printf("%s\n",DC.max_flow()==day_sum?"Yes":"No");
}
return 0;
}
图论--网络流--最大流--POJ 1698 Alice's Chance的更多相关文章
- poj 1698 Alice‘s Chance
poj 1698 Alice's Chance 题目地址: http://poj.org/problem?id=1698 题意: 演员Alice ,面对n场电影,每场电影拍摄持续w周,每周特定几天拍 ...
- 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)
Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...
- poj 1698 Alice's Chance 最大流
题目:给出n部电影的可以在周几拍摄.总天数.期限,问能不能把n部电影接下来. 分析: 对于每部电影连上源点,流量为总天数. 对于每一天建立一个点,连上汇点,流量为为1. 对于每部电影,如果可以在该天拍 ...
- 图论--网络流--费用流POJ 2195 Going Home
Description On a grid map there are n little men and n houses. In each unit time, every little man c ...
- 图论--网络流--费用流--POJ 2156 Minimum Cost
Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...
- 图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)
Description Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very ...
- POJ 1698 Alice's Chance
题目:Alice 要拍电影,每一天只能参与一部电影的拍摄,每一部电影只能在 Wi 周之内的指定的日子拍摄,总共需要花 Di 天时间,求能否拍完所有电影. 典型的二分图多重匹配,这里用了最大流的 din ...
- POJ 1698 Alice's Chance(最大流+拆点)
POJ 1698 Alice's Chance 题目链接 题意:拍n部电影.每部电影要在前w星期完毕,而且一周仅仅有一些天是能够拍的,每部电影有个须要的总时间,问能否拍完电影 思路:源点向每部电影连边 ...
- poj 1698 Alice's Chance 拆点最大流
将星期拆点,符合条件的连边,最后统计汇点流量是否满即可了,注意结点编号. #include<cstdio> #include<cstring> #include<cmat ...
随机推荐
- Flask 入门(特别篇)
作为一款优秀的编辑器,pycharm得到了很多人的支持,但是刚接触它的小伙伴会遇到一个困难,如何把一个别人做的python项目导入到pycharm里面呢? 1.手动建立一个虚拟环境,注意这个环境和你导 ...
- Java创建线程的三种形式的区别以及优缺点
1.实现Runnable,Callable Callable接口里定义的方法有返回值,可以声明抛出异常. 继承Callable接口实现线程 class ThreadCall implements Ca ...
- js操作svg整体缩放
首先我们先创建一个svg整体布局,代码如下: <!DOCTYPE html> <html> <head> <title>js操作svg实现整体缩放< ...
- B. 蚂蚁觅食(二)
B. 蚂蚁觅食(二) 单点时限: 1.0 sec 内存限制: 512 MB 一只饥饿的小蚂蚁外出觅食,幸运的的小蚂蚁发现了好多食物.但是这些食物位于一个N∗M的方格魔法阵的右下角,而小蚂蚁位于方格法阵 ...
- A Bug's Life POJ 2492
D - A Bug's Life 二分图 并查集 BackgroundProfessor Hopper is researching the sexual behavior of a rare spe ...
- 使用GML的八方向自动寻路
使用GML的八方向自动寻路 本教程适合无基础人员使用. 提示 本教程中仅使用了最简单的方法,并且有一些错误和不规范之处.请谅解一下,在评论区提出,我会修改.古人曰"教学相长",希望 ...
- Springboot:员工管理之公共页面提取 高亮显示(十(5))
把顶部和左侧的公共代码分别放到header.html和left.html中 顶部代码:resources\templates\header.html 主内容展示: <!DOCTYPE html& ...
- JDBC教程——检视阅读
JDBC教程--检视阅读 参考 JDBC教程--W3Cschool JDBC教程--一点教程,有高级部分 JDBC教程--易百 JDBC入门教程 – 终极指南 略读 三层架构详解,JDBC在数据访问层 ...
- pytorch 中模型的保存与加载,增量训练
让模型接着上次保存好的模型训练,模型加载 #实例化模型.优化器.损失函数 model = MnistModel().to(config.device) optimizer = optim.Adam( ...
- JS+Selenium+excel追加写入,使用python成功爬取京东任何商品~
之前一直是requests库做爬虫,这次尝试下使用selenium做爬虫,效率不高,但是却没有限制,文章是分别结合大牛的selenium爬虫以及excel追加写入操作而成,还有待优化,打算爬取更多信息 ...