Description

Alice, a charming girl, have been dreaming of being a movie star for long. Her chances will come now, for several filmmaking companies invite her to play the chief role in their new films. Unfortunately, all these companies will start making the films at the same time, and the greedy Alice doesn't want to miss any of them!! You are asked to tell her whether she can act in all the films.

As for a film,

  1. it will be made ONLY on some fixed days in a week, i.e., Alice can only work for the film on these days;
  2. Alice should work for it at least for specified number of days;
  3. the film MUST be finished before a prearranged deadline.

For example, assuming a film can be made only on Monday, Wednesday and Saturday; Alice should work for the film at least for 4 days; and it must be finished within 3 weeks. In this case she can work for the film on Monday of the first week, on Monday and Saturday of the second week, and on Monday of the third week.

Notice that on a single day Alice can work on at most ONE film.

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case begins with a single line containing an integer N (1 <= N <= 20), the number of films. Each of the following n lines is in the form of "F1 F2 F3 F4 F5 F6 F7 D W". Fi (1 <= i <= 7) is 1 or 0, representing whether the film can be made on the i-th day in a week (a week starts on Sunday): 1 means that the film can be made on this day, while 0 means the opposite. Both D (1 <= D <= 50) and W (1 <= W <= 50) are integers, and Alice should go to the film for D days and the film must be finished in W weeks.

Output

For each test case print a single line, 'Yes' if Alice can attend all the films, otherwise 'No'.

Sample Input

2
2
0 1 0 1 0 1 0 9 3
0 1 1 1 0 0 0 6 4
2
0 1 0 1 0 1 0 9 4
0 1 1 1 0 0 0 6 2

Sample Output

Yes
No

Hint

A proper schedule for the first test case:

date     Sun    Mon    Tue    Wed    Thu    Fri    Sat

week1          film1  film2  film1         film1

week2          film1  film2  film1         film1

week3          film1  film2  film1         film1

week4          film2  film2  film2

构图:

0号节点表源点S,      1-350号节点表示每一天(因为最多只有50周),然后350+1到350+N表示这N部电影. 351+N号节点是汇点.

源点到每部电影i有边(s, i, Di).  Di表示这部电影需要拍多少天.

每天j到汇点t有边(j, t, 1).,如果电影i能在第j天拍摄,那么从i到j有边(i,j,1).然后求最大流是否满流!

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=400+5; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;i++) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x= Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0)return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a-=f;
if(a==0) break;
}
}
return flow;
} int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans+=DFS(s,INF);
}
return ans;
} }DC; int n,day_sum;//电影数,总共需要天数
int src,dst;
int can[20+5][7];//can[i][j] 表示第i部电影在一周的第j+1天是否可以拍摄
int need[20+5];
int week[20+5]; int main()
{
int T; scanf("%d",&T);
while(T--)
{
day_sum=0;
scanf("%d",&n);
src=0,dst=350+n+1;
DC.init(350+n+2,src,dst);
for(int i=1;i<=n;i++)
{
for(int j=0;j<7;j++) scanf("%d",&can[i][j]);
scanf("%d%d",&need[i],&week[i]);
DC.AddEdge(src,350+i,need[i]);
day_sum += need[i];
}
for(int i=1;i<=350;i++)//i表每一天
{
DC.AddEdge(i,dst,1);
for(int j=1;j<=n;j++)if(can[j][i%7]==1 && (i-1)/7<week[j])
{
DC.AddEdge(j+350,i,1);
}
}
printf("%s\n",DC.max_flow()==day_sum?"Yes":"No");
}
return 0;
}

图论--网络流--最大流--POJ 1698 Alice's Chance的更多相关文章

  1. poj 1698 Alice‘s Chance

    poj 1698  Alice's Chance 题目地址: http://poj.org/problem?id=1698 题意: 演员Alice ,面对n场电影,每场电影拍摄持续w周,每周特定几天拍 ...

  2. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  3. poj 1698 Alice's Chance 最大流

    题目:给出n部电影的可以在周几拍摄.总天数.期限,问能不能把n部电影接下来. 分析: 对于每部电影连上源点,流量为总天数. 对于每一天建立一个点,连上汇点,流量为为1. 对于每部电影,如果可以在该天拍 ...

  4. 图论--网络流--费用流POJ 2195 Going Home

    Description On a grid map there are n little men and n houses. In each unit time, every little man c ...

  5. 图论--网络流--费用流--POJ 2156 Minimum Cost

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  6. 图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)

    Description Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very ...

  7. POJ 1698 Alice's Chance

    题目:Alice 要拍电影,每一天只能参与一部电影的拍摄,每一部电影只能在 Wi 周之内的指定的日子拍摄,总共需要花 Di 天时间,求能否拍完所有电影. 典型的二分图多重匹配,这里用了最大流的 din ...

  8. POJ 1698 Alice&#39;s Chance(最大流+拆点)

    POJ 1698 Alice's Chance 题目链接 题意:拍n部电影.每部电影要在前w星期完毕,而且一周仅仅有一些天是能够拍的,每部电影有个须要的总时间,问能否拍完电影 思路:源点向每部电影连边 ...

  9. poj 1698 Alice&#39;s Chance 拆点最大流

    将星期拆点,符合条件的连边,最后统计汇点流量是否满即可了,注意结点编号. #include<cstdio> #include<cstring> #include<cmat ...

随机推荐

  1. 【python实现卷积神经网络】卷积层Conv2D实现(带stride、padding)

    关于卷积操作是如何进行的就不必多说了,结合代码一步一步来看卷积层是怎么实现的. 代码来源:https://github.com/eriklindernoren/ML-From-Scratch 先看一下 ...

  2. canal使用记录

    canal是阿里巴巴的来源项目.我们可以通过配置binlog实现数据库监控,得到数据库表或者数据的更新信息.参考我的文档前先去官网看下,可能已经支持更高版本的MySQL了 1. 查看官方开源项目 ht ...

  3. Jmeter常用元件

    1.测试计划:测试元件的容器,相当于一个项目名称 线程组:  2.监听器:负责收集测试结果,同时也被告知了结果显示的方式 (1)查看结果树:看具体某个请求——请求响应,结果明细 (2)聚合报告:汇总报 ...

  4. 【Tool】Windows系统安装Maven依赖管理工具

    安装Maven依赖管理工具 官网下载地址:http://maven.apache.org/download.cgi 系统环境要求: [JDK]Maven3.3版本+需要JDK1.7版本以上支持 [内存 ...

  5. Julia基础语法字符和字符串

    1.Julia字符串  2.字符

  6. stand up meeting 11/18/2015

    今日工作总结: 冯晓云:完成C#版本API的class library编译,尝试与主程序进行通信:昨天临时通知让用C++封装,不解!!![后续:我用C#做了一个查词的APP,调用的就是这个API的DL ...

  7. E - Dividing Chocolate ATcoder

    题目大意:切割图形,给你一个非0即1的矩阵,将它切割成多个长方形,使每个小长方形中1的个数不得多于k个,切割的规则,要么切一整行,要么是一整列. 题解: 二进制枚举. 注意行数最大才是10.用二进制枚 ...

  8. CTO的窘境

    做CTO太难了,常年的coding思维让你早已与世隔绝,CTO有很好的技术方案,但CEO.CFO等O听不懂是很麻烦的事.总得来说,做CTO一定要技术背景出身,有很强的沟通能力和情商,敏锐的洞察力和决断 ...

  9. 新建Django项目示例--图书管理系统

    知识点: Django 1. 安装 1. Django版本 1.11.xx 2. 安装方式 1. 命令行 --> Python环境(双版本,pip的使用) 2. PyCharm安装 2. 创建D ...

  10. python机器学习的常用算法

    Python机器学习 学习意味着通过学习或经验获得知识或技能.基于此,我们可以定义机器学习(ML)如下 - 它可以被定义为计算机科学领域,更具体地说是人工智能的应用,其为计算机系统提供了学习数据和从经 ...