Graph & Tree
图论学习笔记
TYQ图论真是个渣渣呢
所以TYQ决定猛补图论
好的从0x60开始
表示博客园不用Latex真的烦呢QAQ,公式难打的要命QAQ
0x60~0x62
最短路讲解跳过
最小生成树:
- Kruskal:
挺容易的,贪心的选最大值就好了
时间复杂度emmmO(mlogm),适用于稀疏图
- Prim
首先只在最小生成树中加入root节点
设两个集合S(剩余点),T(生成树)
每次找到两个点,使得他们的连线最短
时间复杂度O(n2),多用于稠密图
0x63~0x64
众所周知树是一种特殊的图,所以我们这里采用链式前向星存边
树的直径:
- 树形Dp:
- demo:
void dp(int x){
v[x] = true ;
for(int i=head[x]; i;i = Next[i]){
int y = ver[i];
if(v[y])continue ;
dp(y);
ans = max(ans,d[x]+d[y]+edge[i]) ;
d[x] = max(d[x],d[y]+edge[i])
}
}
//本代码同算法竞赛进阶指南书中代码- 两次Dfs/Bfs
- 从任意一个节点出发找到离他最远的点p
- 从p出发找到离他最远的点q
- 那么p到q为树的一条直径
- demo
void dfs0(int step,int x){
d[x] = step ;
v[x] = true ;
for(int i=head[x]; i;i = Next[i]){
if(!v[i])
dfs0(step+,i) ;
}
if(maxd<step){
maxd = step;
p = x ;
}
}
void dfs1(int step,int x){
d[x] = step ;
v[x] = true ;
for(int i=head[x]; i;i = Next[i]){
if(!v[i])
dfs1(step+,i) ;
}
if(maxd<step){
maxxd = step;
q = x ;
}
}
LCA
找出x与y的最近公共祖先
- 暴力
- 从x节点向上跳,标记所有跳过的节点
- 再从y向上跳,遇到已标记的节点则停止
- 期望时间复杂度O(logN),实际上珂以卡成O(N)
- 树上倍增法
- 设F[x,k]表示x的2k辈祖先,若不存在则为0
- 我们执行一次广/深度优先遍历以求出F数组
- 然后就可以O(logN)回答询问了
- tarjan算法
- 本质上是优化倍增法
- 离线算法,需要一次性读入全部询问
- 在tarjan算法执行的任意时刻,树上的节点分为三类:
- 已经访问完毕并且回溯的节点,标记值为2
- 已经开始递归,但尚未回溯的节点,标记值为1
- 其他节点,标记值为0
- 对于正在访问的节点x,他到根节点的路径已经标记为1
- 若y是已访问完的节点,则LCA(x,y)就是从y走到根节点的路程中第一个标记为1的节点
- 优化:当一个节点获得2的标记的时候,合并它所在的集合与它的父节点所在的集合
- 那么每次查询就可以直接使用getfa(y)了
- 时间复杂度为O(N+M),不会证
- ST表:
- dfs一遍,得到特殊的长度为 2*n-1 dfs序,然后维护一个在dfs序上的区间深度最小值,而拥有这个最小深度值的节点就是我们要求的LCA。
- 使用ST表预处理珂以O(1)回答询问
- 时间复杂度O(NlogN),且是在线算法
- 树链剖分:
树剖求LCA的速度还很快,O(N)预处理,O(logN)查询,相较于倍增LCA更快,而且求LCA那部分更好写,但是dfs部分比较难写.
树剖求LCA可能相较于倍增最大的优势是空间复杂度较低,只要O(N)
整个算法流程就是先树剖O(N)然后一个判断u与v是否在同一条重链,不在就往上跳,最后得到LCA,在就可直接得到LCA
- 至于为什么查询是O(logN)的,因为重链只有 logN 条,所以是O(logN)的
- 就是常数大点QAQ
树上差分
- 例题
- 我们定义一条附加边(x,y)覆盖的边为主要边构成的树中,x,y之间路径上的边
- 那么若第一步切断覆盖了0次的主要边,则可任意斩断一条附加边
- 若第一步切断覆盖了1次的主要边,则第二部方法唯一
- 若斩断覆盖了两次及两次以上的主要边则无解
- 那么问题就转化为给定一个无向图和一颗生成树,求每条主要边被附加边覆盖的次数
- 那么我们把一条附加边(x,y)覆盖改为把数上x,y两个节点点权加一,LCA(x,y)点权减一
- 最后进行遍历,求出F[x]代表以x为根的子树的节点点权之和
- 那么F[x]就是x与其父亲之间连边被覆盖的次数
基环树
- 树加上一条边
- 构成的环叫做基环
- 跟树差不多,但要先dfs找环,先考虑子树,再考虑环
- 可能以后会替代树?毕竟都在考仙人掌了
- JZOJ考过
接下来我要换Markdown了QAQ
引用:算法竞赛进阶指南
Warning!
本文由 TYQ 创作,采用 知识共享署名 4.0 国际许可协议进行许可。
转载要与作者联系,并需在正文明显处署名作者且注明文章出处。
对了,我永远喜欢C++啊。
Graph & Tree的更多相关文章
- CACTI命令行添加DEVICE/GRAPH/TREE
有时要加入大量的机器到 Cacti ,直接修改 Cacti 还是很复杂的.所以最好还是通过他本身提供的工具来实现. Cacti 早就为我们想到过这个问题了.这些工具就在 cacti/cli 目 ...
- hdu4044 GeoDefense
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4044 题意:一个树上的塔防游戏.给你n个结点的树,你要在树结点上建塔防御,在第 i 个结点上有 ki ...
- cacti监控windows服务器
参考文献: 通过Cacti监控windows资源 前提条件 一.已安装好Cacti:ubuntu下cacti安装配置 二.准备好以下安装文件: Cacti_SNMP_ ...
- (原创)monitor Dell Powerconnec 6224 with cacti
使用cacti监控DELL Powerconnect 6224,可以直接使用http://docs.cacti.net/usertemplate:host:dell:powerconnect:62xx ...
- 《算法》第四章部分程序 part 2
▶ 书中第四章部分程序,加上自己补充的代码,随机生成各类无向图 ● 随机生成无向图 package package01; import edu.princeton.cs.algs4.StdOut; i ...
- github 排名前100的项目
dotnet/roslyn The .NET Compiler Platform ("Roslyn") provides open-source C# and Visual Bas ...
- igraph Tutorial
igraph Tutorial¶ 参考http://www.cs.rhul.ac.uk/home/tamas/development/igraph/tutorial/tutorial.html ...
- How to install cacti on centos 6
Cacti – Network and performance monitoring tool Cacti is one of best monitoring tool used to monit ...
- PatentTips - Sprite Graphics Rendering System
BACKGROUND This disclosure relates generally to the field of computer graphics. More particularly, b ...
随机推荐
- 使用kali中的Metasploit通过windows7的永恒之蓝漏洞攻击并控制win7系统(9.27 第十三天)
1.开启postgresql数据库 2.msfconsole 进入MSF中 3.search 17-010 搜索cve17-010相关的exp auxiliary/scanner/smb/smb_ms ...
- HDU - 4405 Aeroplane chess(期望dp)
题意:沿着x轴从0走到大于等于N的某处,每一步的步数由骰子(1,2,3,4,5,6)决定,若恰好走到x轴上某飞行路线的起点,则不计入扔骰子数.问从0走到大于等于N的某处的期望的扔骰子次数. 分析: 1 ...
- POJ 3295:Tautology
Tautology Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10482 Accepted: 3982 Descri ...
- idea将web项目打成war包放在tomcat/webapps上运行
1.进入Project Structure 或者 file -> Project Structure 或者 快捷键ctrl+alt+shift+s 2.选中Artifacts 3.点加号,然后如 ...
- 《新标准C++程序设计》2.1-2.3(C++学习笔记3)
1.结构化程序设计的不足 程序=算法+数据结构 数据结构和变量相对应,算法和函数相对应,算法是用来操作数据结构的. 结构化程序设计中,函数和其所操作的数据结构,没有直观的联系.随着程序规模的增加,程序 ...
- 尝试用kotlin做一个app(二)
导航条 我想实现的效果是这样的 类似于ViewPager的效果,子类导航页面可以滑动,当滑动某个子类导航页面,导航线会平滑地向父类导航移动 ·添加布局 <!--导航分类:编程语言/技术文档/源码 ...
- django数据库读写分离
django数据库读写分离 1. 配置数据库 settings.py文件中 用SQLite: DATABASES = { 'default': { 'ENGINE': 'django.db.backe ...
- POJ 1840:Eqs 哈希求解五元方程
Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 14169 Accepted: 6972 Description ...
- 【Linux】linux磁盘管理
在服务器管理中,我们会关心硬盘用了多少,还有多少剩余空间,哪些文件占用空间最大等等.以便我们在合适的时机为服务器添加硬盘分区以及管理磁盘文件等操作,让磁盘的利用率最大化,现在我们看下linux系统中和 ...
- pip速度慢解决办法
pip速度慢解决办法 sudo pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple 注意加不加sudo是 ...