51nod1586 约数和
果然我自己写的读入优化naive!。。。换题目给的读入优化就A了。。。话说用visual交快了好多啊。。。
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
return x*f;
}
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
const int BufferSize=1<<14;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
return x*f;
}
const int nmax=1e6+5;
ll c[nmax];int t[nmax];
int main(){
int n=read(),m=read(),u,v,d;
rep(i,1,n) for(int j=i;j<=n;j+=i) ++t[j];
rep(i,1,m){
u=read();
if(u==1){
v=read(),d=read();
for(int j=v,k=1;j<=n;j+=v,++k) c[j]+=d*t[k];
}else{
v=read();printf("%lld\n",c[v]);
}
}
return 0;
}
有三个下标从1到n的数组a、b、c。
a数组初始全为0。
b[i]=∑j|ia[j]
c[i]=∑j|ib[j]
需要进行下列操作:
1 x y :将a[x]加上y
2 x :询问当前c[x]的值
由于数据比较多,请用输入挂。
第一行两个整数,n和q,分别表示数组下标范围和操作次数。(1<=n,q<=1,000,000)
接下来q行,描述一个操作。(x随机,1<=x<=n,1<=y<=10^6)
对于每一个第二种操作输出一个答案。
5 5
1 2 4
2 2
2 4
1 1 3
2 5
4
8
6
51nod1586 约数和的更多相关文章
- BZOJ 1968: [Ahoi2005]COMMON 约数研究
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2032 Solved: 1537[Submit] ...
- 【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...
- 【P1379】天才的约数和
来自GDOI2007,原题已不可考-- 又自己做出来了好开心,找特殊性是个关键的切入点 原题: 这天周航遇到了靳泽旭. 周航:"我是天才!" 靳泽旭:"你为什么是天才?& ...
- codevs 2606 约数和问题
题目描述 Description Smart最近沉迷于对约数的研究中. 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X) ...
- hdu5175 gcd 求约数
题意:求满足条件GCD(N,M) = N XOR M的M的个数 sol:和uva那题挺像的.若gcd(a,b)=a xor b=c,则b=a-c 暴力枚举N的所有约数K,令M=NxorK,再判断gcd ...
- hdu1492(约数个数定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...
- POJ 2480 (约数+欧拉函数)
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...
- POJ 1845 (约数和+二分等比数列求和)
题目链接: http://poj.org/problem?id=1845 题目大意:A^B的所有约数和,mod 9901. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1) ...
- HDU 1452 (约数和+乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...
随机推荐
- MySQL查看表占用空间大小(转)
MySQL查看表占用空间大小(转) //先进去MySQL自带管理库:information_schema //自己的数据库:dbwww58com_kuchecarlib //自己的表:t_carmod ...
- Unix环境链接静态库
静态库 请点评 有时候需要把一组代码编译成一个库,这个库在很多项目中都要用到,例如libc就是这样一个库,我们在不同的程序中都会用到libc中的库函数(例如printf),也会用到libc中的变量(例 ...
- HDU 4027 Can you answer these queries?(线段树,区间更新,区间查询)
题目 线段树 简单题意: 区间(单点?)更新,区间求和 更新是区间内的数开根号并向下取整 这道题不用延迟操作 //注意: //1:查询时的区间端点可能前面的比后面的大: //2:优化:因为每次更新都 ...
- mysql变量使用总结
set语句的学习: 使用select定义用户变量的实践将如下语句改成select的形式: set @VAR=(select sum(amount) from penalties);我的修改: sele ...
- 递推DP HDOJ 5328 Problem Killer
题目传送门 /* 递推DP: 如果a, b, c是等差数列,且b, c, d是等差数列,那么a, b, c, d是等差数列,等比数列同理 判断ai-2, ai-1, ai是否是等差(比)数列,能在O( ...
- HttpWebRequest模拟登陆,存储Cookie以便登录请求后使用
[一篮饭特稀原创,转载请注明出自http://www.cnblogs.com/wanghafan/p/3284481.html] PostLogin :登录,并保存Cookie 1 public st ...
- linux环境几个特殊的shell变量
特殊的shell变量: $0 获取当前执行的shell脚本的文件名 $n 获取当前执行的shell脚本的第n个参数值,n=1..9 $* 获取当前shell的所有参数 “$1 $2 $3 …注意 ...
- Axure 注册码
用户名:axureuser 序列号:8wFfIX7a8hHq6yAy6T8zCz5R0NBKeVxo9IKu+kgKh79FL6IyPD6lK7G6+tqEV4LG
- Recover Binary Search Tree-恢复二叉查找树
题目描述: 由于某种原因一个二叉排序树的两个节点的元素被交换,在不改变树的结构的情况下恢复这颗二叉排序树 题目来源: http://oj.leetcode.com/problems/recover-b ...
- scala函数式编程
1.作为值的函数 在Scala中,函数和数字一样,可以在变量中存放函数.可以把函数赋值给一个变量,格式为:val foee=fun _(函数名+空格+_)形式 2.匿名函数 在scala中,不需要给每 ...