滑雪
Time Limit: 1000MS   Memory Limit: 65536K
     

Description

Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长底滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子

 1  2  3  4 5

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。

Input

输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。

Output

输出最长区域的长度。

Sample Input

5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

Sample Output

25

可以说所有用递推实现的动态规划均可以利用记忆化搜索实现。而某些题目之所以可以用递推求解,是因为这类题目同一阶段的状态表示上有很大的相关性,比如数字矩阵中某一行或列,这使得我们可以计算一个阶段的所有状态后再计算下一状态。而某些题目中利用动态规划划分的同一阶段的状态表示上没有多大相关性,比如Skiing里面的状态,从某点做起点每滑动一步为一个阶段,我们无法用一个准确的可以直接利用的集合将一个阶段中的状态表示出来,只能从已知状态去找和它相关联的状态。对于Skiing我们已知的是目标状态(即四面都不比该点高的点),通过边界条件(即四面都比该点高的最优值为1),便可以进行记忆化搜索。

#include <iostream>
#include <string>
#include <string.h>
#include <map>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <vector>
#include <math.h>
#include <set>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std ;
const int d[][]={{,},{-,},{,-},{,}} ;
int N ,M ;
int height[][] ;
int dp[][] ; int cango(int x ,int y){
return <=x && x<=N && <=y && y<=M ;
} int dfs(int x ,int y){
if(dp[x][y] != -)
return dp[x][y] ;
int all = ;
for(int i = ; i < ; i++){
int nx = x + d[i][] ;
int ny = y + d[i][] ;
if(!cango(nx,ny))
continue ;
if(height[x][y] > height[nx][ny])
all = Max(all , + dfs(nx,ny)) ;
}
if(all == )
return dp[x][y] = ;
else
return dp[x][y] = all ;
} int main(){
while(scanf("%d%d",&N,&M)!=EOF){
for(int i = ; i <= N ; i++)
for(int j = ; j <= M ; j++)
scanf("%d",&height[i][j]) ;
memset(dp,-,sizeof(dp)) ;
int ans = ;
for(int i = ; i <= N ; i++)
for(int j = ; j <= M ; j++)
ans = Max(ans,dfs(i,j)) ;
cout<<ans<<endl ;
}
return ;
}

POJ 1088 滑雪 记忆化DP的更多相关文章

  1. POJ 1088 滑雪(记忆化搜索+dp)

    POJ 1088 滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 107319   Accepted: 40893 De ...

  2. POJ 1088 滑雪 (记忆化搜索)

    题目链接:http://poj.org/problem?id=1088 题意很好懂,就是让你求一个最长下降路线的长度. dp[i][j]记录的是i j这个位置的最优的长度,然后转移方程是dp[i][j ...

  3. POJ 1088 滑雪 记忆化优化题解

    本题有人写是DP,只是和DP还是有点区别的,应该主要是记忆化 Momoization 算法. 思路就是递归,然后在递归的过程把计算的结果记录起来,以便后面使用. 非常经典的搜索题目,这样的方法非常多题 ...

  4. poj 1088 滑雪(区间dp+记忆化搜索)

    题目链接:http://poj.org/problem?id=1088 思路分析: 1>状态定义:状态dp[i][j]表示在位置map[i][j]可以滑雪的最长区域长度: 2>状态转移方程 ...

  5. POJ 1088: 滑雪(经典 DP+记忆化搜索)

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 74996   Accepted: 27818 Description ...

  6. poj 1088 (dfs+记忆化) 滑雪

    题目;http://poj.org/problem?id=1088 感觉对深搜还不太熟练,所以练习一下,类似于连连看的那题,注意的是所求的是最大达长度,并不是从最大的或者最小的点出发得到的就是最长的路 ...

  7. POJ 1088 滑雪(简单的记忆化dp)

    题目 又一道可以称之为dp的题目,虽然看了别人的代码,但是我的代码写的还是很挫,,,,,, //看了题解做的简单的记忆化dp #include<stdio.h> #include<a ...

  8. Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)

    Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...

  9. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

随机推荐

  1. VS2012远程调试(winform+web 远程调试)

    VS2012远程调试   一.调试WinFrom 程序 安装rtools_setup_x64 下载 配置Remote 启动Remote debugger 默认端口4016,选择工具-〉选项,选择 无身 ...

  2. Windows蓝屏后产生的.dmp分析原因

    Windows系统电脑出现蓝屏后都会自动重启,重启后电脑屏幕会提示蓝屏的相关信息,此时如果你没有来得及查看,你也可以进入windows7的“事件查看器”(位置为:控制面板--系统和安全--管理工具-- ...

  3. Windows原生MPIO存储多路径软件详解与应用

    介绍 在Windows Server 2008和Windows Server 2008 R2中开始支持Native Multipathing(MPIO)软件作为操作系统的一个组件存在.EMC旗下的存储 ...

  4. C++编程新思维中的技巧

    1.编译器断言 技巧大致跟后面的一样,都是利用偏特化,但是在C++ 0X里面已经有static_assert,所以感觉这东西也没什么用处了,更多的只是开阔眼界 2.偏特化 就是专门对一个类型去进行特殊 ...

  5. 关于学习Perl

    Perl是一门很有用的语言,可以用它来做很多事.然而,它也仅是一门语言,掌握了Perl,你只是掌握了Computer领域的一小块知识.在学习Perl前,请明确你的学习目的,并采用正确的学习方法和资源. ...

  6. java工程师分享:我是如何自学成才的?

    原文:http://www.java800.com/peixun-79062115.html 我是10年河南工业大学的毕业生,当时我们专业许多学生都去报了java培训机构,去达内的都不少.我也想去培训 ...

  7. flash builder 启动ios模拟器失败是什么原因?

    参考知乎:http://www.zhihu.com/question/22537362 在mac os设置-安全性与隐私-隐私-辅助功能 找到flash bulder 打上前面的勾,如下图:

  8. 部署与管理ZooKeeper(转)

    本文以ZooKeeper3.4.3版本的官方指南为基础:http://zookeeper.apache.org/doc/r3.4.3/zookeeperAdmin.html,补充一些作者运维实践中的要 ...

  9. MVC 介绍

    1>.NUGET,发布软件,管理平台: 2>.Razor,mvc视图引擎,集中生成HTML代码模板@开始,有自己的格式,语法,如同web forms视图引擎web forms view e ...

  10. Debug program crash with dump file.

    1. Task manager, -> find the process for the program which crashed. 2. Right click the process -& ...