滑雪
Time Limit: 1000MS   Memory Limit: 65536K
     

Description

Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长底滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子

 1  2  3  4 5

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。

Input

输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。

Output

输出最长区域的长度。

Sample Input

5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

Sample Output

25

可以说所有用递推实现的动态规划均可以利用记忆化搜索实现。而某些题目之所以可以用递推求解,是因为这类题目同一阶段的状态表示上有很大的相关性,比如数字矩阵中某一行或列,这使得我们可以计算一个阶段的所有状态后再计算下一状态。而某些题目中利用动态规划划分的同一阶段的状态表示上没有多大相关性,比如Skiing里面的状态,从某点做起点每滑动一步为一个阶段,我们无法用一个准确的可以直接利用的集合将一个阶段中的状态表示出来,只能从已知状态去找和它相关联的状态。对于Skiing我们已知的是目标状态(即四面都不比该点高的点),通过边界条件(即四面都比该点高的最优值为1),便可以进行记忆化搜索。

#include <iostream>
#include <string>
#include <string.h>
#include <map>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <vector>
#include <math.h>
#include <set>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std ;
const int d[][]={{,},{-,},{,-},{,}} ;
int N ,M ;
int height[][] ;
int dp[][] ; int cango(int x ,int y){
return <=x && x<=N && <=y && y<=M ;
} int dfs(int x ,int y){
if(dp[x][y] != -)
return dp[x][y] ;
int all = ;
for(int i = ; i < ; i++){
int nx = x + d[i][] ;
int ny = y + d[i][] ;
if(!cango(nx,ny))
continue ;
if(height[x][y] > height[nx][ny])
all = Max(all , + dfs(nx,ny)) ;
}
if(all == )
return dp[x][y] = ;
else
return dp[x][y] = all ;
} int main(){
while(scanf("%d%d",&N,&M)!=EOF){
for(int i = ; i <= N ; i++)
for(int j = ; j <= M ; j++)
scanf("%d",&height[i][j]) ;
memset(dp,-,sizeof(dp)) ;
int ans = ;
for(int i = ; i <= N ; i++)
for(int j = ; j <= M ; j++)
ans = Max(ans,dfs(i,j)) ;
cout<<ans<<endl ;
}
return ;
}

POJ 1088 滑雪 记忆化DP的更多相关文章

  1. POJ 1088 滑雪(记忆化搜索+dp)

    POJ 1088 滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 107319   Accepted: 40893 De ...

  2. POJ 1088 滑雪 (记忆化搜索)

    题目链接:http://poj.org/problem?id=1088 题意很好懂,就是让你求一个最长下降路线的长度. dp[i][j]记录的是i j这个位置的最优的长度,然后转移方程是dp[i][j ...

  3. POJ 1088 滑雪 记忆化优化题解

    本题有人写是DP,只是和DP还是有点区别的,应该主要是记忆化 Momoization 算法. 思路就是递归,然后在递归的过程把计算的结果记录起来,以便后面使用. 非常经典的搜索题目,这样的方法非常多题 ...

  4. poj 1088 滑雪(区间dp+记忆化搜索)

    题目链接:http://poj.org/problem?id=1088 思路分析: 1>状态定义:状态dp[i][j]表示在位置map[i][j]可以滑雪的最长区域长度: 2>状态转移方程 ...

  5. POJ 1088: 滑雪(经典 DP+记忆化搜索)

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 74996   Accepted: 27818 Description ...

  6. poj 1088 (dfs+记忆化) 滑雪

    题目;http://poj.org/problem?id=1088 感觉对深搜还不太熟练,所以练习一下,类似于连连看的那题,注意的是所求的是最大达长度,并不是从最大的或者最小的点出发得到的就是最长的路 ...

  7. POJ 1088 滑雪(简单的记忆化dp)

    题目 又一道可以称之为dp的题目,虽然看了别人的代码,但是我的代码写的还是很挫,,,,,, //看了题解做的简单的记忆化dp #include<stdio.h> #include<a ...

  8. Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)

    Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...

  9. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

随机推荐

  1. Android 程式开发:(十三)特殊碎片 —— 13.2 DialogFragment

    Android 程式开发:(十三)特殊碎片 —— 13.2 DialogFragment 原文地址 我们也可以创建另外一种碎片——DialogFragment.顾名思义,DialogFragment就 ...

  2. 拖动控件 javascript原生,兼容IE6-11、chrome、firefox、Opera、Safari

    鼠标拖动元素,对于初学者来说,是一个很难的话题,其实只要应用好事件,就能很好的控制拖动的对象,其主要事件是 mousedown,mousemove,mouseup,其原理是在鼠标点击元素时,在给定鼠标 ...

  3. [Hibernate] - Annotations - One To One

    Hibernate annotation 一对一的两种实现: 1)幅表中有主表的主键ID做为引用 2)幅表的主键即为主表的ID hibernate.cfg.xml <?xml version=& ...

  4. Angular学习(6)- 数组双向梆定+filter+directive

    示例: <!DOCTYPE html> <html ng-app="MyApp"> <head> <title>Study 6< ...

  5. java书箱

    http://www.blogjava.net/kuuyee/archive/2013/06/03/400084.html http://www.blogjava.net/cheneyfree/

  6. html5外包—长年承接html5外包业务:《Sencha Touch权威指南》下载

    <Sencha Touch权威指南>内容简介:如何才能全面而透彻地理解和掌握移动应用开发框架Sencha Touch并开发出令人心动的移动应用?<Sencha Touch权威指南&g ...

  7. 查看CentOS版本方法

    查看内核版本 这个命令适用于所有的linux,包括Redhat.SuSE.Debian.Centos等发行版. root@MyMail ~ # uname Linux root@MyMail ~ # ...

  8. Tortoise SVN Clean up失败的解决方法

    step1: 到 sqlite官网 (http://www.sqlite.org/download.html) 下载 sqlite3.exe (找到 Precompiled Binaries for ...

  9. Python 定制类与其对象的创建和应用

    1.创建新类Athlete,创建两个唯一的对象实例sarah james,他们会继承Athlete类的特性 >>> class Athlete: def __init__(self, ...

  10. string和stringBuilder区别

    C# String 对象是不可改变的.每次使用 System.String 类中的方法之一时,都要在内存中创建一个新的字符串对象,这就需要为该新对象分配新的空间.在需要对字符串执行重复修改的情况下,与 ...