题目描述

有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数)。

要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。

分析

思路1:判定性dp

设表示用了前n个物品,能否达到容量j。

然后对取最大的就可以了。

思路2:偏离搜索

我们有种很好的思想:贪心。

先排序,然后每次尽可能取最大的。

但是这样是错误的。

我们考虑调整。

我们坚定几乎都是取最大的。

所以使用偏离搜索:只有限定次数能不取最大的。

结合一个剪枝:若之后的sum+当前的s<=v,则直接取完。

#include <cstdio>
#include <cctype>
#include <algorithm>
using namespace std;

#define rep(i,a,b) for (int i=(a);i<=(b);i++)

const int N=32;
const int D=5;

int v,n;
int a[N];

int sum[N];
int res;

inline int rd(void)
{
    int x=0,f=1; char c=getchar();
    for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
    for (;isdigit(c);c=getchar()) x=x*10+c-'0';
    return x*f;
}

void DFS(int w,int del,int s)
{
    if (s+sum[w]<=v)
    {
        res=max(res,s+sum[w]);
        return;
    }
    if (s+a[w]<=v)
    {
        DFS(w-1,del,s+a[w]);
        if (del<D) DFS(w-1,del+1,s);
    }
    else DFS(w-1,del,s);
}

int main(void)
{
    freopen("codevs1014.in","r",stdin);
    freopen("codevs1014.out","w",stdout);

    v=rd(),n=rd();
    rep(i,1,n) a[i]=rd();
    sort(a+1,a+n+1);

    rep(i,1,n)
        sum[i]=sum[i-1]+a[i];
    DFS(n,0,0);
    printf("%d\n",v-res);

    return 0;
}

思路3:随机化

我们有种很好的思想:贪心。

先排序,然后每次尽可能取最大的。

但是这样是错误的。

我们考虑不排序了。

多次随机序列,然后能取就取。

随机1000000次即可。

#include <cstdio>
#include <cctype>
#include <climits>
#include <algorithm>
using namespace std;

#define rep(i,a,b) for (int i=(a);i<=(b);i++)
#define per(i,a,b) for (int i=(a);i>=(b);i--)

const int N=32;
const int T=1000000;
const int MAX=INT_MAX;

int v,n;
int a[N];

int res;

inline int rd(void)
{
    int x=0,f=1; char c=getchar();
    for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
    for (;isdigit(c);c=getchar()) x=x*10+c-'0';
    return x*f;
}

int Calc(void)
{
    int nv=0;
    rep(i,1,n)
        if (nv+a[i]<=v)
            nv+=a[i];
    return v-nv;
}

int main(void)
{
//  freopen("codevs1014.in","r",stdin);
//  freopen("codevs1014.out","w",stdout);

    v=rd(),n=rd();
    rep(i,1,n) a[i]=rd();

    res=MAX;
    rep(tms,1,T)
    {
        random_shuffle(a+1,a+n+1);
        int t=Calc(); res=min(res,t);
    }
    printf("%d\n",res);

    return 0;
}

小结

(1)伪判定性问题

我们称“是不是”这种问题为判定性问题。

而很多最值问题都可以通过判定性问题来表述,所以称这类问题为伪判定性的。

总之:许多判定性问题可以转化为最值问题

(2)骗分的思路

骗分要有思路才行。

常规的骗分被称为“老实的骗分”,常见dfs求解,再结合两个常见的剪枝:①ans>=sum ②now+rest<=v

但是,有时候我们假如能想到一些错误的贪心,那么就可以诞生一些很棒的方法。常见方法1:偏离搜索。常见方法2:随机排列顺序,这种方法可用于最大团的求解。

总之,要活学活用,具体题目还是要具体分析。

【CodeVS 1014】装箱问题的更多相关文章

  1. Codevs 1014 装箱问题

    题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...

  2. codevs 1014 装箱问题 2001年NOIP全国联赛普及组

    题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...

  3. 【动态规划】【零一背包】CODEVS 1014 装箱问题 2001年NOIP全国联赛普及组

    #include<cstdio> #include<algorithm> using namespace std; ],f[]; int main() { scanf(&quo ...

  4. wikioi 1014 装箱问题

    来源:http://wikioi.com/problem/1014/ 1014 装箱问题 29人推荐 收藏 发题解 提交代码 报错 题目描写叙述 输入描写叙述 输出描写叙述 例子输入 例子输出 提示 ...

  5. 1014 装箱问题 CODE[VS]

    1014 装箱问题 2001年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Descripti ...

  6. codevs 3152 装箱问题3

    装箱问题3 http://codevs.cn/problem/3152/ 题目描述 Description 设有n种物品,记作A1.A2.….An,对应于每个Ai(1<=i<=n)都有一个 ...

  7. 【wikioi】1014 装箱问题

    题目链接 算法:动态规划(01背包) 01背包思想:依次对待某一物体,考虑是否放入容量为V的背包中 用f[V]来表示容量为V的背包的最大价值,则决策是 f[V] = max{f[V], f[V-v[i ...

  8. codevs 1464 装箱问题 2

    题目描述 Description 一个工厂制造的产品形状都是长方体,它们的高度都是h,长和宽都相等,一共有六个型号,他们的长宽分别为1*1, 2*2, 3*3, 4*4, 5*5, 6*6.这些产品通 ...

  9. wikioi 1014 装箱问题(背包)

    题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...

随机推荐

  1. iOS之地理位置及定位系统 -- 入门笔记

    这是因为xcode升级造成的定位权限设置问题.升级xcode6.xcode7以后打开以前xcode5工程,程序不能定位.工程升级到xcode6或xcode7编译时需要iOS8 要自己写授权,不然没权限 ...

  2. Python 2.7.9 Demo - JSON的编码、解码

    #coding=utf-8 #!/usr/bin/python import json; dict = {}; dict['name'] = 'nick'; dict['say'] = 'hello ...

  3. Spring的"Hello, world",还有"拿来主义"

    这里有两个类: com.practice包下的SpringTest.java和PersonService.java. Spring可以管理任意的POJO(这是啥?),并不要求Java类是一个标准的Ja ...

  4. [Java解惑]异常

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  5. Mac : 强大的截图

    来源:http://irising.me/2011/11/12135/ Mac的截图功能扩展功能很强大的,不要用QQ那个COM+Ctrl+A弱爆了的截图了~ 首先说一下两种截图1.Command+sh ...

  6. 2013年5月~2013年11月份(转接关于ns51服务平台项目)相关资料:

    <1> [平台首页] 界面截图:(网络游客所看到的界面首页) <2>[注册] 有需求则注册会员(略...) <3>[个人空间] 注册成功后进入个人空间(有深层次的需 ...

  7. iOS - Swift NSData 数据

    前言 public class NSData : NSObject, NSCopying, NSMutableCopying, NSSecureCoding public class NSMutabl ...

  8. equals()和hashcode()

    默认调用的情况: 1.集合在存放对象时,首先判断hashcode(),再判断equals如果都是true,认为是相同的两个元素不进行存储. 删除对象时,将从hashcode指定位置查找再删除 2.在h ...

  9. ccc

    课本第291页第4题 #include<stdio.h> void main() { int n, m, i, k; int p_begin; ]; scanf("%d" ...

  10. 07 SQL优化技术

    本章提要------------------------------------------------------调优技术及什么时候使用------------------------------- ...