参考:http://www.cnblogs.com/ronny/p/4045979.html,博主对源码进行了分析,不过很多没看明白。

分为几个部分。积分图:借助积分图像,图像与高斯二阶微分模板的滤波转化为对积分图像的加减运算。在哈尔特征中也用到这个。

DoH近似:将模板与图产像的卷积转换为盒子滤波运算,我们需要对高斯二阶微分模板进行简化,进而对Hessian矩阵行列式的值进行简化。使用近似的Hessian矩阵行列式的极大值检测斑点,

使用近似的Hessian矩阵行列式来表示图像中某一点x处的斑点响应值,遍历图像中所有的像元点, 便形成了在某一尺度下琉璃点检测的响应图像。

使用不同的模板尺寸,便形成了多尺度斑点响应的金字塔图像,利用这一金字塔图像,就可以进行斑点响应极值点的搜  索,其过程完全与SIFT算法类同。

尺度空间表示:通常想要获取不同尺度的斑点,必须建立图像的尺度空间金字塔。由于采用了盒子滤波和积分图像,并不需要像SIFT算法那样去直接建立图像金字塔,

而是采用不断增大盒子滤波模板的尺寸的间接方法。

兴趣点的定位:为了在图像及不同尺寸中定位兴趣点,我们用了3×3×3邻域非最大值抑制。

这篇博文说得很详细:http://www.cnblogs.com/wangguchangqing/p/4333873.html

关于BFMatcher和FlannBasedMatcher,可参考:http://m.blog.csdn.net/blog/u012564690/40926315

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"//因为在属性中已经配置了opencv等目录,所以把其当成了本地目录一样
#include <opencv2/nonfree/features2d.hpp>
#include "opencv2/highgui/highgui.hpp"
#include<opencv2/legacy/legacy.hpp>
/*这里用的是图像对图像集,注意FLANN的用法*/
using namespace cv;
using namespace std; int main()
{
Mat trainImage = imread("1.jpg"), trainImage_gray;
cvtColor(trainImage, trainImage_gray, CV_BGR2GRAY); vector<KeyPoint> train_keypoint;
Mat trainDescriptor;
SurfFeatureDetector featureDector(80);//80是什么?
featureDector.detect(trainImage_gray, train_keypoint);
SurfDescriptorExtractor featureExtractor; featureExtractor.compute(trainImage_gray, train_keypoint, trainDescriptor); //创建基于FLANN的描述符匹配对象
FlannBasedMatcher matcher;
vector<Mat> train_desc_collection(1, trainDescriptor);//两个参数是什么
matcher.add(train_desc_collection);//这两句什么意思
matcher.train(); VideoCapture cap("test.avi");
unsigned int frameCount = 0; while (char(waitKey(1)) != 'q')
{
int64 time0 = getTickCount();
Mat testImage, testIMage_gray;
cap >> testImage;
if (testImage.empty())
continue;
cvtColor(testImage, testIMage_gray, CV_BGR2GRAY); vector<KeyPoint> test_keyPoint;
Mat testDescriptor;
featureDector.detect(testIMage_gray, test_keyPoint);
featureExtractor.compute(testIMage_gray, test_keyPoint, testDescriptor); vector<vector<DMatch>> matches;
matcher.knnMatch(testDescriptor, matches, 2);//对每个匹配,返回两个最近邻匹配 vector<DMatch> goodMatches;
for (int i = 0; i < matches.size(); i++)
{
if (matches[i][0].distance < 0.6*matches[i][1].distance)//第一个匹配与第二个匹配距离
//足够小时,才认为这是一个好的匹配
goodMatches.push_back(matches[i][0]);
} Mat dstImage;
drawMatches(testImage, test_keyPoint, trainImage, train_keypoint, goodMatches, dstImage);
imshow("匹配窗口", dstImage); cout << cvGetTickFrequency() / (getTickCount() - time0) << endl;
} waitKey(0);
return 0;
}

  

SURF 特征匹配的更多相关文章

  1. OpenCV-Python sift/surf特征匹配与显示

    import cv2 import numpy as np def drawMatchesKnn_cv2(img1_gray,kp1,img2_gray,kp2,goodMatch): h1, w1 ...

  2. 【OpenCV新手教程之十八】OpenCV仿射变换 &amp; SURF特征点描写叙述合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)  ...

  3. opencv surf特征点匹配拼接源码

    http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...

  4. OpenCV2简单的特征匹配

    特征的匹配大致可以分为3个步骤: 特征的提取 计算特征向量 特征匹配 对于3个步骤,在OpenCV2中都进行了封装.所有的特征提取方法都实现FeatureDetector接口,DescriptorEx ...

  5. 基于SURF特征的目标检测

    转战matlab了.步骤说一下: 目标图obj 含目标的场景图scene 载入图像 分别检测SURF特征点 分别提取SURF描述子,即特征向量 用两个特征相互匹配 利用匹配结果计算两者之间的trans ...

  6. 基于SURF特征的图像与视频拼接技术的研究和实现(一)

    基于SURF特征的图像与视频拼接技术的研究和实现(一)      一直有计划研究实时图像拼接,但是直到最近拜读西电2013年张亚娟的<基于SURF特征的图像与视频拼接技术的研究和实现>,条 ...

  7. SURF特征

    了解了SIFT特征后,来学习SURF特征. 虽说是SIFT的一个变种,可是跟SIFT还是有差别的 差别有例如以下: 1.尺度空间的构建(近似)不同. 2.同意尺度空间多层图像同一时候被处理 3.特征点 ...

  8. 特征提取(Detect)、特征描述(Descriptor)、特征匹配(Match)的通俗解释

    特征匹配(Feature Match)是计算机视觉中很多应用的基础,比如说图像配准,摄像机跟踪,三维重建,物体识别,人脸识别,所以花一些时间去深入理解这个概念是不为过的.本文希望通过一种通俗易懂的方式 ...

  9. OpenCV探索之路(二十三):特征检测和特征匹配方法汇总

    一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要. ...

随机推荐

  1. 5G的作业- 云计算

    作业命题:5G对于保险行业的影响,技术层面和业务模式层面 一.5G网络的特点: 5G网络主要有三大特点,极高的速率 enhanced mobile broadband (eMBB),极大的容量 Mas ...

  2. Java字节流与字符流

    九.字节流与字符流 9.1 IO的分类 <段落>根据数据的流向分为:输入流和输出流. 输入流 :把数据从其他设备上读取到内存中的流. 输出流 :把数据从内存 中写出到其他设备上的流. 数据 ...

  3. MySQL relay_log_purge=0 时的风险

    转自: http://xiezhenye.com/2015/12/mysql-relay_log_purge0-%E6%97%B6%E7%9A%84%E9%A3%8E%E9%99%A9.html 有时 ...

  4. MT【181】横穿四象限

    设函数$f(x)=\dfrac{1}{x-a}-\dfrac{\lambda}{x-2}$,其中$a,\lambda\in R$记$A_1=\{(x,y)|x>0,y>0\},A_2=\{ ...

  5. BZOJ 4569 [Scoi2016]萌萌哒 | ST表 并查集

    传送门 BZOJ 4569 题解 ST表和并查集是我认为最优雅(其实是最好写--)的两个数据结构. 然鹅!他俩加一起的这道题,我却--没有做出来-- 咳咳. 正解是这样的: 类似ST表有\(\log ...

  6. Problem A: 道路建设 解题报告

    一定存在一个最优解是一条链 否则可以接上去,不会更差 边权最小的边一定在这条链上 这个比较显然 可以把所有边都减去这个最后加上就行了 把链上的边按距离当前根的深度从小到大排列,设第一个零边位置为\(k ...

  7. 前端学习 -- Css -- 内联元素的盒模型

    内联元素不能设置width和height: 设置水平内边距,内联元素可以设置水平方向的内边距:padding-left,padding-right: 垂直方向内边距,内联元素可以设置垂直方向内边距,但 ...

  8. PostgreSQL(一)教程 -----从头开始

    一.安装 自然,在你能开始使用PostgreSQL之前, 你必须安装它.PostgreSQL很有可能已经安装到你的节点上了, 因为它可能包含在你的操作系统的发布里, 或者是系统管理员已经安装了它.如果 ...

  9. 伸展树(Splay)复杂度证明

    本文用势能法证明\(Splay\)的均摊复杂度,对\(Splay\)的具体操作不进行讲述. 为了方便本文的描述,定义如下内容: 在文中我们用\(T\)表示一棵完整的\(Splay\),并(不严谨地)用 ...

  10. 20145215《网络对抗》shellcode注入&Return-to-libc攻击深入

    20145215<网络对抗>shellcode注入&Return-to-libc攻击深入 Shellcode注入 基础知识 Shellcode实际是一段代码,但却作为数据发送给受攻 ...