【刷题】BZOJ 3495 PA2010 Riddle
Description
有n个城镇被分成了k个郡,有m条连接城镇的无向边。
要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都。
Input
第一行有三个整数,城镇数n(1<=n<=106),边数m(0<=m<=106),郡数k(1<=k<=n)。
接下来m行,每行有两个整数ai和bi(ai≠bi),表示有一条无向边连接城镇ai和bi。
接下来k行,第j行以一个整数wj开头,后面是wj个整数,表示第j个郡包含的城镇。
Output
若有解输出TAK,否则输出NIE。
Sample Input
6 5 2
1 2
3 1
1 4
5 2
6 2
3 3 4 2
3 1 6 5
Sample Output
TAK
Solution
边的要求就是2-SAT的典型限制
额外需要考虑的就是一个国家只能选一个首都的限制,如果直接连的话,边的复杂度是 \(O(n^2)\) 的,承受不了,考虑怎么优化
这个优化也很神奇,叫做前缀后缀连边优化
除了原来的 \(n\) 个点,再建 \(n\) 个点。在一个国家里,如果 \(x\) 号点在第 \(j\) 个位置,即 \(a[j]=x\) ,那么多建的 \(x'\) 这个点代表的就是这个国家里的前 \(j\) 个点有没有选到的
于是就会出来几条限制
如果 \(a[j]\) 选了,那么 \(a[j]'\) 肯定也选了;反之,如果 \(a[j]'\) 没选,那么 \(a[j]\) 肯定没选
一个国家中,如果第 \(a[j]'\) 没选,那么 \(a[j-1]'\) 肯定也没选
一个国家中,如果 \(a[j]'\) 选了,那么 \(a[j+1]'\) 肯定也选了
一个国家中,如果 \(a[j]\) 选了,那么 \(a[j-1]'\) 肯定没选
一个国家中,如果 \(a[j-1]'\) 选了,那么 \(a[j]\) 肯定没选
于是边数优化成 \(O(n)\) ,跑2-SAT就可以了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=4000000+10;
int n,m,k,a[MAXN],e,beg[MAXN],nex[MAXN<<1],to[MAXN<<1],Be[MAXN],DFN[MAXN],LOW[MAXN],Visit_Num,Stack[MAXN],Stack_Num,In_Stack[MAXN],cnt;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void Tarjan(int x)
{
DFN[x]=LOW[x]=++Visit_Num;
In_Stack[x]=1;
Stack[++Stack_Num]=x;
for(register int i=beg[x];i;i=nex[i])
if(!DFN[to[i]])Tarjan(to[i]),chkmin(LOW[x],LOW[to[i]]);
else if(In_Stack[to[i]]&&DFN[to[i]]<LOW[x])LOW[x]=DFN[to[i]];
if(DFN[x]==LOW[x])
{
int temp;++cnt;
do{
temp=Stack[Stack_Num--];
In_Stack[temp]=0;
Be[temp]=cnt;
}while(temp!=x);
}
}
int main()
{
read(n);read(m);read(k);
for(register int i=1;i<=m;++i)
{
int u,v;read(u);read(v);
insert(u<<1,v<<1|1);insert(v<<1,u<<1|1);
}
for(register int i=1;i<=n;++i)insert(i<<1|1,(i+n)<<1|1),insert((i+n)<<1,i<<1);
for(register int i=1;i<=k;++i)
{
int w;read(w);
for(register int j=1;j<=w;++j)read(a[j]);
for(register int j=2;j<=w;++j)
{
insert((a[j-1]+n)<<1|1,a[j]<<1);
insert(a[j]<<1|1,(a[j-1]+n)<<1);
insert((a[j]+n)<<1,(a[j-1]+n)<<1);
insert((a[j-1]+n)<<1|1,(a[j]+n)<<1|1);
}
}
for(register int i=2;i<=(n<<2|1);++i)
if(!DFN[i])Tarjan(i);
for(register int i=2;i<=(n<<2|1);i+=2)
if(Be[i]==Be[i^1])
{
puts("NIE");
return 0;
}
puts("TAK");
return 0;
}
【刷题】BZOJ 3495 PA2010 Riddle的更多相关文章
- BZOJ.3495.[PA2010]Riddle(2-SAT 前缀优化建图)
题目链接 每个城市要么建首都要么不建,考虑2-SAT 这样一个国家内城市两两连边是很显然的,但是边数为O(n^2) 每个国家中仅有一个建首都,考虑新建前缀S[i]=1/0这2n个点表示当前国家的[1, ...
- 3495: PA2010 Riddle 2-sat 前缀优化
3495: PA2010 Riddle 2-sat 前缀优化 链接 bzoj 思路 不想说啥了,看hwim的吧,我去睡觉了zZ. 代码 /******************************* ...
- 3495: PA2010 Riddle
3495: PA2010 Riddle 链接 分析: 每个点要么建首都,要么不建,并且一个点建了,会导致一些点不能建.所以可以考虑2-sat. 但是如果在每个郡里两两连边,边数是n^2的. 考虑用前缀 ...
- 【BZOJ】3495: PA2010 Riddle
题意 \(n(1 \le n \le 1000000)\)个城市,\(k(1 \le k \le n)\)个国家,\(m(1 \le m \le 1000000)\)条边.要求每个国家有且仅有一个首都 ...
- 【BZOJ】3495: PA2010 Riddle 2-SAT算法
[题意]有n个城镇被分成了k个郡,有m条连接城镇的无向边.要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都.n,m,k<=10^6. [算法]2-SAT,前后缀优化建图 [题解] ...
- 【刷题】BZOJ 2407 探险
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
- 【刷题】BZOJ 4316 小C的独立集
Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...
- 【刷题】BZOJ 4176 Lucas的数论
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
随机推荐
- struts2_文件上传的功能
使用Struts内置的fileUpload拦截器(已默认配置)即可,设计的电商网站,提供用户头像上传的功能 1. 2. 3. 4. 5. 5.未使用拦截器 6.未使用filename 7. 8. 9.
- Java面试题,Java三大特性之一——多态的理解
首先我们知道Java是一门面向对象的语言 面向对象三大特性,封装.继承.多态. 封装.继承.多态 ↓ 无论是学习路线,还是众人的口语习惯,都是按照这个这样进行排序,这是有原因的.因为封装好了才能继承, ...
- 20155234 exp4 恶意代码分析
实验4 恶意代码分析 系统运行监控 Schtasks 先建立一个netstat20155234.txt文件,在文件中输入 date /t >> c:\netstat20155234.txt ...
- WPF编程,通过Double Animation动态更改控件属性的一种方法。
原文:WPF编程,通过Double Animation动态更改控件属性的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/a ...
- PostgreSQL杂记页
磨砺技术珠矶,践行数据之道,追求卓越价值 luckyjackgao@gmail.com 返回顶级页:PostgreSQL索引页 此页,记录其他数据库,linux以及各种点滴事项 1--数据库设计 1 ...
- 【php增删改查实例】 第三节 - mysql 建表
这一节,来给数据库中添加一些测试数据. 登陆mysql: 找到%xampp%\mysql\bin 目录, 在此处打开命令窗口,用root用户登陆mysql 用户表建表sql: CREATE TABLE ...
- Hadoop日记Day6---Linux的常用命令
一.系统操作(开机.关机.登陆等)命令 选项名称 使用格式 含义 reboot 输入回车即可 立刻重启 shutdown shutdown –r now 立刻重启 shutdown –r 20: ...
- CS229笔记:线性回归
线性回归问题 首先做一些符号上的说明: \(x^{(i)}\):特征(feature) \(y^{(i)}\):目标变量(target variables) \(\mathcal{X}\):特征空间 ...
- [CF1060E]Sergey and Subway[树dp]
题意 给出 \(n\) 个点的树,求 \(\sum_{i=1}^n{\sum_{j=i}^n{\lceil \frac{dis(i,j)}{2} \rceil}}\) . \(n\leq 2 \tim ...
- 【Android UI设计与开发】第04期:引导界面(四)仿人人网V5.9.2最新版引导界面
这一篇我将会以人人网的引导界面为实例来展开详细的讲解,人人网的引导界面比较的新颖,不同于其他应用程序千篇一律的靠滑动来引导用户,而是以一个一个比较生动形象的动画效果展示在用户们的面前,有一种给人眼前一 ...