bzoj1013/luogu4035 球形空间生成器 (高斯消元)
根据各点到圆心的距离相等,可以列出有N个等号的方程
假设圆心坐标是(x,y,z,...)的话,$x^2,y^2,z^2$等是可以消掉的
于是整理一下,就变成了N元1次方程组,有N个方程、而且保证是相容的
高斯消元的话,就是拿着第一式去把剩下的第一项都消了,再拿第二式把剩下的第二项都消了,...到最后方程组呈一个阶梯状,然后从最后一点点往回带就能解出来
复杂度$O(n^3)$
#include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N;
double pos[maxn][maxn],a[maxn][maxn],b[maxn]; int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd();
for(i=;i<=N+;i++){
for(j=;j<=N;j++){
scanf("%lf",&pos[i][j]);
}
if(i>){
for(j=;j<=N;j++){
a[i-][j]=*(pos[i][j]-pos[i-][j]);
a[i-][N+]+=pos[i][j]*pos[i][j]-pos[i-][j]*pos[i-][j];
}
}
}
for(i=;i<=N;i++){
for(j=i+;j<=N;j++){
double p=a[j][i]/a[i][i];
for(k=i;k<=N+;k++){
a[j][k]-=p*a[i][k];
}
}
}
for(i=N;i;i--){
double r=a[i][N+];
for(j=N;j>i;j--){
r-=b[j]*a[i][j];
}
b[i]=r/a[i][i];
}
for(i=;i<=N;i++)
printf("%.3lf ",b[i]);
return ;
}
bzoj1013/luogu4035 球形空间生成器 (高斯消元)的更多相关文章
- 【BZOJ1013】球形空间产生器(高斯消元)
[BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...
- BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】
BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...
- BZOJ1013球形空间产生器sphere 高斯消元
@[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- 【BZOJ1013】【JSOI2008】球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1600 Solved: 860[Submi ...
- BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4846 Solved: 2525[Subm ...
- 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元
题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...
- [luogu4035 JSOI2008] 球形空间产生器 (矩阵 高斯消元)
传送门 题目描述 有一个球形空间产生器能够在 nnn 维空间中产生一个坚硬的球体.现在,你被困在了这个 nnn 维球体中,你只知道球面上 n+1n+1n+1 个点的坐标,你需要以最快的速度确定这个 n ...
随机推荐
- 基于TLS证书手动部署kubernetes集群(上)
一.简介 Kubernetes是Google在2014年6月开源的一个容器集群管理系统,使用Go语言开发,Kubernetes也叫K8S. K8S是Google内部一个叫Borg的容器集群管理系统衍生 ...
- [CF986F]Oppa Funcan Style Remastered[exgcd+同余最短路]
题意 给你 \(n\) 和 \(k\) ,问能否用 \(k\) 的所有 \(>1\) 的因子凑出 \(n\) .多组数据,但保证不同的 \(k\) 不超过 50 个. \(n\leq 10^{1 ...
- 深入浅出OAuth2.0授权
一.前言 说到OAuth,先来一段百度到的比较官方的解释: OAUTH协议为用户资源的授权提供了一个安全的.开放而又简易的标准.与以往的授权方式不同之处是OAUTH的授权不会使第三方触及到用户的帐号信 ...
- AngularJS 的异步服务测试与Mocking
测试 AngularJS 的异步服务 最近,在做项目时掉进了 AngularJS 异步调用 $q 测试的坑中,直接躺枪了.折腾了许久日子,终于想通了其中的道道,但并不确定是最佳的解决方案,最后还是决定 ...
- 【拾遗】理解Javascript中的Arguments
前言 最近在看JavaScript相关的知识点,看到了老外的一本Javascript For Web Developers,遇到了一个知识盲点,觉得老外写的很明白很透彻,记录下来加深印象,下面是我摘出 ...
- python3解析网页经过base64编码后的图片
有时候我们打开网页看到的图片不是普通的url,例如:www.baidu.com/static/2.jpg,而是经过base64方式加密过的路径:例如:data:img/jpg;base64,/9j/4 ...
- dtcp格式定义
common name type optional comment id string y Content id version string y DTCP version. "1.0&qu ...
- PAT甲题题解-1033. To Fill or Not to Fill (25)-模拟
模拟先说一下例子,最后为方便起见,在目的地安增加一个费用为0的加油站0 1 2 3 4 5 6 7 87.1 7.0 7.2 6.85 7.5 7.0 7.3 6.0 00 150 200 300 4 ...
- C++ 继承和派生介绍
继承(inheritance)是软件重用的一种方式,程序员通过继承可以吸收已有类的数据和行为来创建新类,并可以添加新的数据和行为来增强类的功能.创建新类时,并不需要创建全新的数据和成员函数,我们可以指 ...
- Beta任务项录入
今天PM把任务项整理写入TFS中,明天开始正式开发工作: