根据各点到圆心的距离相等,可以列出有N个等号的方程

假设圆心坐标是(x,y,z,...)的话,$x^2,y^2,z^2$等是可以消掉的

于是整理一下,就变成了N元1次方程组,有N个方程、而且保证是相容的

高斯消元的话,就是拿着第一式去把剩下的第一项都消了,再拿第二式把剩下的第二项都消了,...到最后方程组呈一个阶梯状,然后从最后一点点往回带就能解出来

复杂度$O(n^3)$

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N;
double pos[maxn][maxn],a[maxn][maxn],b[maxn]; int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd();
for(i=;i<=N+;i++){
for(j=;j<=N;j++){
scanf("%lf",&pos[i][j]);
}
if(i>){
for(j=;j<=N;j++){
a[i-][j]=*(pos[i][j]-pos[i-][j]);
a[i-][N+]+=pos[i][j]*pos[i][j]-pos[i-][j]*pos[i-][j];
}
}
}
for(i=;i<=N;i++){
for(j=i+;j<=N;j++){
double p=a[j][i]/a[i][i];
for(k=i;k<=N+;k++){
a[j][k]-=p*a[i][k];
}
}
}
for(i=N;i;i--){
double r=a[i][N+];
for(j=N;j>i;j--){
r-=b[j]*a[i][j];
}
b[i]=r/a[i][i];
}
for(i=;i<=N;i++)
printf("%.3lf ",b[i]);
return ;
}

bzoj1013/luogu4035 球形空间生成器 (高斯消元)的更多相关文章

  1. 【BZOJ1013】球形空间产生器(高斯消元)

    [BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...

  2. BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】

    BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...

  3. BZOJ1013球形空间产生器sphere 高斯消元

    @[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...

  4. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  5. 【BZOJ1013】【JSOI2008】球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1600  Solved: 860[Submi ...

  6. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  7. BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4846  Solved: 2525[Subm ...

  8. 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元

    题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...

  9. [luogu4035 JSOI2008] 球形空间产生器 (矩阵 高斯消元)

    传送门 题目描述 有一个球形空间产生器能够在 nnn 维空间中产生一个坚硬的球体.现在,你被困在了这个 nnn 维球体中,你只知道球面上 n+1n+1n+1 个点的坐标,你需要以最快的速度确定这个 n ...

随机推荐

  1. 十万的License只取决于一个连接

    前段时间看到一份代码,小规模.低难度的一个应用,MVC用到极致,业务逻辑却混成一团麻,应该是中了培训班的毒.现在的程序员,大多是没仔细读过<现代操作系统>,没看过编译原理,不知道堆与栈,没 ...

  2. laravel 5.5 《电商实战 》辅助函数

    Laravel 提供了很多 辅助函数,有时候我们也需要创建自己的辅助函数. 这里介绍了 tinker,一个laravel内置的php交互式控制台,方便调试php代码 php artisan tinke ...

  3. 20155238 2016-2017-2 《JAVA程序设计》第十周学习总结

    教材学习内容总结 # Java计算机网络基础 计算机网络 计算机网络是通过传输介质.通信设施和网络通信协议,把分散在不同地点的计算机设备互连起来,实现资源共享和数据传输的系统.网络编程就就是编写程序使 ...

  4. 在window下安装第二个mysql

        win7电脑上已经通过安装的方式安装过一个5.5版本的mysql,现在需要再安装一个5.6版本的mysql,因此采用了免安装版的mysql 1.下载         直接去官网下载,社区版   ...

  5. 汇编 浮点指令FLD,FSTP,FADD与FPU寄存器

    知识点:  浮点数的存放方式  st0至st7  FLD,FST,FADD指令 一.浮点数的存放方式 00401000 /$ 55 PUSH EBP 00401001 |. 8BEC MOV E ...

  6. Windows下面的常用的快捷键

    最小化的快捷键: 最小化当前窗口:Alt+ESC 还原刚刚最小化的窗口:Alt+Tab(次快捷键组合可以在多个窗口中切换) 显示桌面,切换之前的桌面:Win+D   在浏览器页面之间切换:Ctrl+T ...

  7. Visual Studio Package 插件开发(Visual Studio SDK)

    背景 这段时间公司新做了一个支付系统,里面有N个后台服务,每次有更新修改,拷贝打包发布包“不亦乐乎”...于是我想要不要自己定制个打包插件. 部分朋友可能会认为,有现成的可以去找一个,干嘛不用持续集成 ...

  8. Markdown基本使用方法

    最近开通了博客,看到网上好多推荐markdown的,而且博客园支持markdown,所以决定学习一下. 百度百科对markdown的介绍: Markdown是一种可以使用普通文本编辑器编写的标记语言, ...

  9. Docker-安装(CentOS7)

    1.安装需要的软件包:yum-util提供yum-config-manager功能 yum install -y yum-utils device-mapper-persistent-data lvm ...

  10. PHP学习 安装环境和语法学习

    要回归技术了,昨天下午专门去深圳大学城图书馆借书,甚是漂亮 禁不住搞了几张照片 在图书馆里面的书真多,图书馆环境真好,清华大学 北京大学研究生院的学生们有福了,最后一句深圳政府真尼玛有钱,下图是图书馆 ...