根据各点到圆心的距离相等,可以列出有N个等号的方程

假设圆心坐标是(x,y,z,...)的话,$x^2,y^2,z^2$等是可以消掉的

于是整理一下,就变成了N元1次方程组,有N个方程、而且保证是相容的

高斯消元的话,就是拿着第一式去把剩下的第一项都消了,再拿第二式把剩下的第二项都消了,...到最后方程组呈一个阶梯状,然后从最后一点点往回带就能解出来

复杂度$O(n^3)$

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N;
double pos[maxn][maxn],a[maxn][maxn],b[maxn]; int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd();
for(i=;i<=N+;i++){
for(j=;j<=N;j++){
scanf("%lf",&pos[i][j]);
}
if(i>){
for(j=;j<=N;j++){
a[i-][j]=*(pos[i][j]-pos[i-][j]);
a[i-][N+]+=pos[i][j]*pos[i][j]-pos[i-][j]*pos[i-][j];
}
}
}
for(i=;i<=N;i++){
for(j=i+;j<=N;j++){
double p=a[j][i]/a[i][i];
for(k=i;k<=N+;k++){
a[j][k]-=p*a[i][k];
}
}
}
for(i=N;i;i--){
double r=a[i][N+];
for(j=N;j>i;j--){
r-=b[j]*a[i][j];
}
b[i]=r/a[i][i];
}
for(i=;i<=N;i++)
printf("%.3lf ",b[i]);
return ;
}

bzoj1013/luogu4035 球形空间生成器 (高斯消元)的更多相关文章

  1. 【BZOJ1013】球形空间产生器(高斯消元)

    [BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...

  2. BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】

    BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...

  3. BZOJ1013球形空间产生器sphere 高斯消元

    @[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...

  4. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  5. 【BZOJ1013】【JSOI2008】球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1600  Solved: 860[Submi ...

  6. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  7. BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4846  Solved: 2525[Subm ...

  8. 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元

    题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...

  9. [luogu4035 JSOI2008] 球形空间产生器 (矩阵 高斯消元)

    传送门 题目描述 有一个球形空间产生器能够在 nnn 维空间中产生一个坚硬的球体.现在,你被困在了这个 nnn 维球体中,你只知道球面上 n+1n+1n+1 个点的坐标,你需要以最快的速度确定这个 n ...

随机推荐

  1. Flutter - 自动引用pub.dartlang.org/packages上最新的packages

    一般在pubspec.yaml里面引用pub.dartlang.org/packages的packages时,我们都是在包名称后面加上版本号的,谷歌默认也是这样写的. cupertino_icons: ...

  2. Android SDK版本号与API Level 的对应关系-转

    Android SDK版本号 与 API Level 对应关系 http://developer.android.com/guide/appendix/api-levels.html Android ...

  3. 大数据入门第十四天——Hbase详解(二)基本概念与命令、javaAPI

    一.hbase数据模型 完整的官方文档的翻译,参考:https://www.cnblogs.com/simple-focus/p/6198329.html 1.rowkey 与nosql数据库们一样, ...

  4. c# 菜鸟包裹查询

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  5. 20155209 林虹宇Exp2 后门原理与实践

    Exp2 后门原理与实践 实验内容 一.使用netcat获取主机操作Shell,cron启动 使用netcat获取主机操作Shell Win获得Linux Shell 查看win的ip地址 windo ...

  6. IT高管和易筋经的故事

    老板是我非常敬重的前领导之一,他的一些管理风格,也影响了后来我对技术团队的管理. 理想企业 什么是程序员理想的IT企业?公司里面有良好的同事关系,合理的产品需求和开发进度,最好老板懂点编程,这样公司更 ...

  7. 12、利用docker快速搭建Wordpress网站

    一.准备工作 结构图: 用户访问页面,Nginx将请求进行转发,如果请求的是php页面,则通过FastCGI转发给后端php进行处理:如果非php页面,则直接返回静态页面. 关键点: mysql.ph ...

  8. Js_cookie保存登录名

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head ...

  9. pandas 初识(三)

    Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame ...

  10. Notepad++常用插件

    Notepad++常用插件 1.CCompletion 进行文本的方法查找的工具. 会点击Ccompletion中的CCompletion菜单,就会出现菜单选择框 2.Compare 进行文本比较的工 ...