(2015浙江重点中学协作体一模) 设ABCDEF为正六边形,一只青蛙开始在顶点A处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D点,则停止跳动;若5次之内不能到达D点,则跳完5次也停止跳动.那么这只青蛙从开始到停止,可能出现的不同跳法共_______种.

分析:
易知青蛙不能经过跳1次、2次或4次到达D点,故青蛙的跳法只有下列两种:
(1)青跬跳3次到达D点,有ABCD,AFED 2种跳法;
(2)青蛙一共跳5次后停止,那么,前3次的跳法一定不能到达D,只能到达B或F,则共有AFEF,ABAF,AFAF,ABCB,ABAB,AFAB这6种跳法,随后2次的跳法各有4种,比如由F出发,则有FEF,FED,FAF,FAB,共4种,因此共有6×4=24(种).故共有24+2=26(种).

解答:

青蛙跳5次,只可能跳到B、D、F三点(从A开始依次编号mod 2易得).
青蛙顺时针跳1次算+1,逆时针跳1次算-1,写5个“□1”,在□中填“+”号或“-”号:□1□1□1□1□1
规则可解释为:前三个□中如果同号,则停止填写;若不同号,则后2个□中继续填写符号.
前三□同号的方法有2种;前三个□不同号的方法有$2^3-2=6$种,后两个□中填号的方法有22种.
∴ 共有2+6×4=26种方法.

MT【166】青蛙跳的更多相关文章

  1. 青蛙跳台阶(Fibonacci数列)

    问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n= ...

  2. 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)

    递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...

  3. 青蛙跳台阶问题——剑指offer

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶,求该青蛙跳上一个n级台阶总共有多少中跳法. http://www.nowcoder.com/books/coding-interviews?pa ...

  4. 剑指offer青蛙跳台阶问题

    (1)一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. //递归方式  public static int f(int n) { //参数合法性验证 ...

  5. [蓝桥杯]PREV-44.历届试题_青蛙跳杯子

    问题描述 X星球的流行宠物是青蛙,一般有两种颜色:白色和黑色. X星球的居民喜欢把它们放在一排茶杯里,这样可以观察它们跳来跳去. 如下图,有一排杯子,左边的一个是空着的,右边的杯子,每个里边有一只青蛙 ...

  6. [leetcode]45. Jump Game II青蛙跳(跳到终点最小步数)

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  7. 《剑指offer》青蛙跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 很裸的斐波那契数列. class Solution { public: int jumpFloor ...

  8. 《剑指offer》-青蛙跳台阶II

    一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 其实题目很水...就是一个等比数列通项公式嘛 f(0)=1 f(1)=1 f(n)=f( ...

  9. 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题

     本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...

随机推荐

  1. LCD驱动应该怎么写?–基于stm32F407 [复制链接]

    够用的硬件能用的代码使用的教程 (拷贝过来的代码有点乱,请下载附件查看文档) 资料下载地址:https://pan.baidu.com/s/1bHUVe6X6tymktUHk_z91cA 网络上配套S ...

  2. 从源代码解释Android事件分发机制

    在ViewRootImpl的setView方法中.用户的触摸按键消息是体如今窗体上的.而windowManagerService则是管理这些窗体,它一旦接收到用户对窗体的一些触摸按键消息,会进行对应的 ...

  3. BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包

    分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...

  4. 20155237 《JAVA程序设计》实验二(JAVA面向对象程序设计)实验报告

    20155237 <JAVA程序设计>实验二(JAVA面向对象程序设计)实验报告 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S ...

  5. 20155301PC平台逆向破解

    20155301PC平台逆向破解 1.掌握NOP, JNE, JE, JMP, CMP汇编指令的机器码 NOP:NOP指令即"空指令".执行到NOP指令时,CPU什么也不做,仅仅当 ...

  6. Luogu P2055 [ZJOI2009]假期的宿舍

    一道网络有关的问题,还是一句话 网络流重在建模! 这里主要讲两种算法. 1.二分图匹配: 分析题意,我们可以知道题目要求是让所有留在学校的人都能有床睡 而 所有留在学校的人=本校不回家的人+外校的人: ...

  7. mfc 重载赋值运算符

    重载赋值运算符= 一.重载运算符格式 返回类型 operator 运算符 (参数); 如: bool operator=(char*s); int operator>(char*s); bool ...

  8. 利用OVS+FLOODLIGHT,为数据表添加VLAN_ID和MPLS

    话不多说,直接上拓扑: 我这里是用主机h1 (10.0.0.1)ping 主机h2(10.0.0.2) 1.添加VLAN标签 v1: sudo ovs-ofctl add-flow m1-s1 in_ ...

  9. C#杂乱知识汇总

    :first-child{margin-top:0!important}.markdown-body>:last-child{margin-bottom:0!important}.markdow ...

  10. 【技巧】如何清空SQLServer的日志文件

    一.应用场景 在一次项目实施的过程中,发现一个小问题,在开发环境中备份下来的数据库大约15G,压缩后更小一些,但是在另外一台设备上部署的时候,发现总是提示空间不足.通过查询发现数据库的日志文件比较大, ...