MT【166】青蛙跳
(2015浙江重点中学协作体一模) 设ABCDEF为正六边形,一只青蛙开始在顶点A处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D点,则停止跳动;若5次之内不能到达D点,则跳完5次也停止跳动.那么这只青蛙从开始到停止,可能出现的不同跳法共_______种.

分析:
易知青蛙不能经过跳1次、2次或4次到达D点,故青蛙的跳法只有下列两种:
(1)青跬跳3次到达D点,有ABCD,AFED 2种跳法;
(2)青蛙一共跳5次后停止,那么,前3次的跳法一定不能到达D,只能到达B或F,则共有AFEF,ABAF,AFAF,ABCB,ABAB,AFAB这6种跳法,随后2次的跳法各有4种,比如由F出发,则有FEF,FED,FAF,FAB,共4种,因此共有6×4=24(种).故共有24+2=26(种).
解答:
青蛙跳5次,只可能跳到B、D、F三点(从A开始依次编号mod 2易得).
青蛙顺时针跳1次算+1,逆时针跳1次算-1,写5个“□1”,在□中填“+”号或“-”号:□1□1□1□1□1
规则可解释为:前三个□中如果同号,则停止填写;若不同号,则后2个□中继续填写符号.
前三□同号的方法有2种;前三个□不同号的方法有$2^3-2=6$种,后两个□中填号的方法有22种.
∴ 共有2+6×4=26种方法.
MT【166】青蛙跳的更多相关文章
- 青蛙跳台阶(Fibonacci数列)
问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n= ...
- 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...
- 青蛙跳台阶问题——剑指offer
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶,求该青蛙跳上一个n级台阶总共有多少中跳法. http://www.nowcoder.com/books/coding-interviews?pa ...
- 剑指offer青蛙跳台阶问题
(1)一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. //递归方式 public static int f(int n) { //参数合法性验证 ...
- [蓝桥杯]PREV-44.历届试题_青蛙跳杯子
问题描述 X星球的流行宠物是青蛙,一般有两种颜色:白色和黑色. X星球的居民喜欢把它们放在一排茶杯里,这样可以观察它们跳来跳去. 如下图,有一排杯子,左边的一个是空着的,右边的杯子,每个里边有一只青蛙 ...
- [leetcode]45. Jump Game II青蛙跳(跳到终点最小步数)
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...
- 《剑指offer》青蛙跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 很裸的斐波那契数列. class Solution { public: int jumpFloor ...
- 《剑指offer》-青蛙跳台阶II
一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 其实题目很水...就是一个等比数列通项公式嘛 f(0)=1 f(1)=1 f(n)=f( ...
- 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...
随机推荐
- jqgrid 设置行编辑为本地端编辑状态
有时,我们需要在jqgrid表格中做编辑操作,而jqgrid默认是启动了行保存连接到服务器更新.此时,如果没有指定editurl的有效url值时会报错 有时,我们需要将编辑完的表格数据一次性提交保存( ...
- Android Device Monitor 文件管理的常见问题 - z
Android Device Monitor 是 Android Studio 中用于监测模拟器或真机运行状态的一款开发者工具.但开发者在使用它的过程中往往会遇到很多问题,尤其对于新手.本文分析了实际 ...
- 20155217《网络对抗》Exp07 网络欺诈防范
20155217<网络对抗>Exp07 网络欺诈防范 实践内容 简单应用SET工具建立冒名网站 ettercap DNS spoof 结合应用两种技术,用DNS spoof引导特定访问到冒 ...
- EZ 2018 04 13 NOIP2018 模拟赛(八)
这次的题目都是什么鬼? 玄学乱搞+肉眼看CODE+倒着搜索? 好吧是我ZZ了 链接在此 T1 玄学乱搞 由于考场上写的部分分做法忘记讨论n<=2000时的情况,少得了30pts 很容易得到一个基 ...
- 使用 idea 的Bookmarks(书签)功能
https://blog.csdn.net/qq_36376059/article/details/80277767
- linux下的tar命令详解
通过SSH访问服务器,难免会要用到压缩,解压缩,打包,解包等,这时候tar命令就是是必不可少的一个功能强大的工具.linux中最流行的tar是麻雀虽小,五脏俱全,功能强大. tar命令可以为linux ...
- binlog2sql使用总结
binlog2sql是大众点评开源的一款用于解析binlog的工具,在测试环境试用了下,还不错. 其具有以下功能 1. 提取SQL 2. 生成回滚SQL 关于该工具的使用方法可参考github操作文档 ...
- Flutter - 创建底部导航栏
之前写过的一篇文章介绍了 Flutter - 创建横跨所有页面的侧滑菜单, 这次就一起来学习一下底部导航栏. 底部导航栏在ios平台上非常常见,app store就是这样的风格.还有就是大家最常用的微 ...
- 【分享】Java学习之路:不走弯路,就是捷径
1.如何学习程序设计? JAVA是一种平台,也是一种程序设计语言,如何学好程序设计不仅仅适用于JAVA,对C++等其他程序设计语言也一样管用.有编程高手认为,JAVA也好C也好没什么分别,拿来就用.为 ...
- 浅谈我的UI设计之路
时光匆匆,进入UI学习已经快两个月了,这段时间过得很充实,因为有压力才有收获. 还记的刚刚学习手绘的时候,对于这个行业只有一个初步的认识,知道自己喜欢,但是真正学习的时候才发现,我要学习的东西还有很多 ...