BZOJ3724PA2014Final Krolestwo——欧拉回路+构造
题目描述
你有一个无向连通图,边的总数为偶数。
设图中有k个奇点(度数为奇数的点),你需要把它们配成k/2个点对(显然k被2整除)。对于每个点对(u,v),你需要用一条长度为偶数(假设每条边长度为1)的路径将u和v连接。每条路径允许经过重复的点,但不允许经过重复的边。这k/2条路径之间也不能有重复的边。
输入
第一行有两个整数n,m(2<=n,m<=250000),分别表示点数、边数,m为偶数。
接下来m行,每行两个整数a,b(1<=a,b<=n,a≠b),表示a,b间连有一条边。不存在重边。保证奇点的数目不为零。
输出
如果你认为无解就输出NIE。
设图中有k个奇点,则输出由k/2部分组成,每个部分包含两行:第一行为u,v,l,表示连接的两个点,及路径长度。第二行为空格隔开的l个整数,表示u到v的路径。边按照输入顺序从1到m编号。
若有多组答案,任意输出其中一个。
样例输入
1 2
2 3
3 4
4 5
5 6
6 1
1 4
2 5
样例输出
1 5 2
6 5
2 4 2
8 4
另一种合法输出:
1 5 6
1 2 3 7 6 5
2 4 2
8 4
根据题目给出的路径没有重边的要求,我们可以尝试找出原图的一个欧拉回路,这样就能满足路径没有重复边的条件了。要使原图有欧拉回路就要保证没有奇度数点,我们新建一个点$x$,将它连边向所有奇度数点,这样就能保证原图有欧拉回路了。但这样还是不能保证每个路径都有偶数条边,我们将原图拆点建新图将一个点$u$拆成$u_{A},u_{B}$两个点,将原图边$(u,v)$变为$(u_{A},v_{B})$或$(u_{B},v_{A})$(具体如何连下面再说)。将所有原图奇度数点$u$在新图中连边$(u_{A},x)$,这样就保证了新图中一条边的两端点下标不同(即一定有一个$A$一个$B$),而任意一对$A$点之间的任意路径都有偶数条边。对于原图的边我们找出原图的任意一棵生成树,对于不在生成树上的边随便连上述哪种都行,然后我们规定一个生成树的根,从叶子结点往上倒推出每个点连向父亲的边是$(u_{A},v_{B})$还是$(u_{B},v_{A})$。因为原图边数为偶数,所有这样连完显然是可以保证每个点度数为偶数。因为只需要配对原图奇度数的点,也就是新图中与$x$相连的点,我们从$x$开始$dfs$,并记录沿途边的编号并打上访问标记,到一个点时只要有没标记的出边就可以走下去,当再一次走到$x$时就说明匹配了一对点。这样不断走下去,当$x$的出边都被标记时就说明所有点对都匹配完毕。这也就是说实际上我们并不需要求出新图的一个欧拉回路。有一点需要注意的是因为$dfs$找路径时走过的边就不会再走了,而每个点可能会被遍历许多次,所以,每次走完的边都要在链式前向星上删除掉,否则会被卡。
这里有两个版本供大家选择
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define pr pair<int,int>
using namespace std;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int read() {int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;}
vector<pr>v[250010];
int vis[500010];
int to[1000010];
int head[500010];
int next[1000010];
int q[500010];
int num[10000010];
int cnt;
int S,T;
int n,m;
int x,y;
int d[250010];
int dep[250010];
int r[250010];
int tot=1;
void add(int x,int y,int id)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
num[tot]=id;
}
void dfs(int x,int fa,int num)
{
dep[x]=dep[fa]+1;
int len=v[x].size();
for(int i=0;i<len;i++)
{
int to=v[x][i].first;
if(!dep[to])
{
dfs(to,x,v[x][i].second);
}
else if(dep[to]>dep[x])
{
r[x]^=1;
add(x<<1,to<<1|1,v[x][i].second);
add(to<<1|1,x<<1,v[x][i].second);
}
}
if(r[x])
{
r[x]^=1;
add(x<<1,fa<<1|1,num);
add(fa<<1|1,x<<1,num);
}
else
{
r[fa]^=1;
add(x<<1|1,fa<<1,num);
add(fa<<1,x<<1|1,num);
}
}
void dfs2(int x)
{
if(x==1)
{
if(cnt)
{
printf("%d %d %d\n",S,T,cnt);
for(int i=1;i<=cnt;i++)
{
printf("%d ",q[i]);
}
printf("\n");
}
cnt=S=T=0;
}
else
{
T=x>>1;
if(!S)
{
S=x>>1;
}
}
while(1)
{
int i=head[x];
if(!i)
{
break;
}
head[x]=next[i];
if(vis[i>>1])
{
continue;
}
vis[i>>1]=1;
if(num[i])
{
q[++cnt]=num[i];
}
dfs2(to[i]);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
v[x].push_back(make_pair(y,i));
v[y].push_back(make_pair(x,i));
d[x]++,d[y]++;
}
for(int i=1;i<=n;i++)
{
r[i]=d[i]&1;
if(d[i]&1)
{
add(1,i<<1,0);
add(i<<1,1,0);
}
}
dfs(1,0,0);
dfs2(1);
}
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pr pair<int,int>
using namespace std;
vector<pr>v[500010];
int vis[500010];
int to[1000010];
int head[500010];
int next[1000010];
int q[500010];
int num[10000010];
int cnt;
int S,T;
int n,m;
int x,y;
int d[500010];
int dep[500010];
int r[500010];
int f[500010];
int tot=1;
int find(int x)
{
if(f[x]==x)
{
return x;
}
return f[x]=find(f[x]);
}
void add(int x,int y,int id)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
num[tot]=id;
r[x]++;
}
void dfs(int x,int fa,int num)
{
int len=v[x].size();
for(int i=0;i<len;i++)
{
if(v[x][i].first!=fa)
{
dfs(v[x][i].first,x,v[x][i].second);
}
}
if(fa)
{
if(r[x]&1)
{
add(x,fa+n,num);
add(fa+n,x,num);
}
else
{
add(x+n,fa,num);
add(fa,x+n,num);
}
}
}
void dfs2(int x)
{
while(1)
{
int i=head[x];
if(i==-1)
{
break;
}
head[x]=next[i];
if(vis[i>>1])
{
continue;
}
vis[i>>1]=1;
dfs2(to[i]);
q[++cnt]=num[i];
}
}
int main()
{
scanf("%d%d",&n,&m);
memset(head,-1,sizeof(head));
for(int i=1;i<=n;i++)
{
f[i]=i;
}
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
d[x]++,d[y]++;
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
f[fx]=fy;
v[x].push_back(make_pair(y,i));
v[y].push_back(make_pair(x,i));
}
else
{
add(x,y+n,i);
add(y+n,x,i);
}
}
for(int i=1;i<=n;i++)
{
if(d[i]&1)
{
add(0,i,m+i);
add(i,0,m+i);
}
}
dfs(1,0,0);
dfs2(0);
while(cnt)
{
S=q[cnt--]-m;
int i=cnt;
while(q[i]<=m&&i>1)i--;
T=q[i]-m;
printf("%d %d %d\n",S,T,cnt-i);
for(int j=cnt;j>i;j--)
{
printf("%d ",q[j]);
}
printf("\n");
cnt=i-1;
}
}
BZOJ3724PA2014Final Krolestwo——欧拉回路+构造的更多相关文章
- BZOJ3724 PA2014Final Krolestwo(欧拉回路+构造)
如果没有长度为偶数的限制,新建一个点向所有奇点连边,跑欧拉回路即可,显然此时一定存在欧拉回路,因为所有点度数都为偶数. 考虑长度为偶数的限制,将每个点拆成两个点放进一个二分图里,那么每条原图中的边在二 ...
- hdu 4850 字符串构造---欧拉回路构造序列 递归+非递归实现
http://acm.hdu.edu.cn/showproblem.php? pid=4850 题意:构造长度为n的字符序列.使得>=4的子串仅仅出现一次 事实上最长仅仅能构造出来26^4+4- ...
- CF36E Two Paths (欧拉回路+构造)
题面传送门 题目大意:给你一张可能有重边的不保证联通的无向图,现在要在这个图上找出两条路径,恰好能覆盖所有边一次,根据边的编号输出方案,无解输出-1 一道很不错的欧拉路径变形题 首先要知道关于欧拉路径 ...
- NOI前训练日记
向别人学习一波,记点流水帐.17.5.29开坑. 5.29 早晨看了道据说是树状数组优化DP的题(hdu5542),然后脑补了一个复杂度500^3的meet in the middle.然后死T... ...
- IOI 2020 集训队作业胡扯
首先安慰自己:做的没集训队快很正常-- 很正常-- 做不完也很正常-- 很正常-- 全都不会做也很正常-- 很正常-- 表格 试题一 完成情况 试题二 完成情况 试题三 完成情况 cf549E cf6 ...
- 2015多校.MZL's endless loop(欧拉回路的机智应用 || 构造)
MZL's endless loop Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Oth ...
- CF527E Data Center Drama(构造+欧拉回路)
题目链接 大意: 给你一个无向图. 要求加最少的边,然后给这些无向图的边定向,使得每一个点的出入度都是偶数. 输出定向后的边数和边集. n<=10^5 m<=2*10^5 很巧妙的构造题- ...
- UVa 12118 nspector's Dilemma (构造+DFS+欧拉回路)
题意:给定n个点,e条边和每条边的长度t,每两个点之间都有路相连,让你求一条最短的路经过这e条边. 析:刚开始想到要判连通,然后把相应的几块加起来,但是,第二个样例就不过,后来一想,那么有欧拉回路的还 ...
- CF429E Points and Segments 构造、欧拉回路
传送门 如果把一条线段\([l,r]\)看成一条无向边\((l,r+1)\),从\(l\)走到\(r+1\)表示线段\([l,r]\)染成红色,从\(r+1\)走到\(l\)表示线段\([l,r]\) ...
随机推荐
- Python从菜鸟到高手(7):字符串
1. 单引号字符串和转义符 字符串与数字一样,都是值,可以直接使用,在Python控制台中直接输入字符串,如"Hello World",会按原样输出该字符串,只不过用单引号括了 ...
- win2016 配置IIS 和mysql5.7 迁移数据表的两个小坑
今天配置一整天,就IIS都装了一整天,都是没办法安装.net3.5的问题. 最后解决办法:https://help.aliyun.com/knowledge_detail/38203.html?spm ...
- Jquery遍历之获取子级元素、同级元素和父级元素
Jquery遍历之获取子级元素.同级元素和父级元素 Jquery的遍历,其实就当前位置的元素相对于其他元素的位置的关系进行查找或选取HTML元素.以某项选择开始,并沿着这条线进行移动,或向上(父级). ...
- VirtualBox安装复制Centos6.6配置网络
由于要搭建mongodb的集群,先用虚拟机做下相关实验,以前都用VM Vare,但是现在这个电脑的配置不是太好,VM Vare比较耗资源,所以选择VirtualBox. 1.下载VirtualBox和 ...
- 新浪2017校园招聘---C++后台研发
一共10道题目,难度不大,就是题量大,时间短. 1. 编程 写一个函数,求出一字符串的所有排列. 2. 编程 实现一个在32位系统下把字符串转换成浮点数的函数 floa ...
- IOS-43-导航栏标题navigationItem.title不能改变颜色的两种解决方法
IOS-43-导航栏标题navigationItem.title不能改变颜色的两种解决方法 IOS-43-导航栏标题navigationItem.title不能改变颜色的两种解决方法 两种方法只是形式 ...
- Python_字典及其操作
字典 概念 字典,Python基础数据类型之一,{}以键值对的形式存储数据. 以key : value 形式存储数据.例如,name 为 key,Laonanhai 为 value. dic = {' ...
- 【kindle笔记】之 《明朝那些事儿》-2018-7-1
[kindle笔记]读书记录-总 最近在读这本书.之前在微信读书里断断续续读过,读到深处还想蹦起来做笔记那种.后来种种原因断了,再没续上. 现在又开始啦.最近还在重八兄造反阶段,还很早呢,有时候晚上玩 ...
- 抓包工具之fiddler
fiddler手机抓包的原理与抓pc上的web数据一样,都是把fiddler当作代理,网络请求走fiddler,fiddler从中拦截数据,由于fiddler充当中间人的角色,所以可以解密https ...
- 生命周期函数以及vue的全局注册
beforeCreate 在创造实例之前 created 创造实例以后 beforeMount 在挂载前 render 渲染节点到页面上 //将虚拟dom数组渲染出来 mounted 挂载以后 bef ...