LA3490 Generator(KMP + 高斯消元)
题意
一开始给你一个长为 \(S\) 的字符串。
从空串开始,不断在后面添加一个 \([A, A + n]\) 的一个字符。
第一次包含 \(S\) 的时候会停止添加。问期望的添加次数。
有 \(T\) 组数据。
\(T \le 10, |S| \le 12, n \le 26\)
题解
单模板匹配的直接用 \(\mathrm{KMP}\) 就可以了。
那么我们枚举 \(S\) 第 \(i\) 位 \(S_i\) ,然后枚举当前这位填的数 \(c\) ,那么就会转移到 \(S_{\delta (i, c)}\) 。(这个过程和普通匹配跳 \(fail\) 是一样的)
然后是期望,我们考虑倒推。令 \(dp_i\) 为当前匹配了前 \(i\) 位期望添加的字符才能匹配完。
那么显然有如下的转移:
- \(i = |S|: dp_i = 0\)
- \(i \not = |S|: dp_i = (\sum_{c} dp_{\delta(i, c)}) + 1\)
这样转移显然会出环。这种 \(dp\) 直接上高斯消元即可。
但是如果直接用 long double 做的话,虽然样例过得了,但是精度会被卡掉。
那有什么好办法吗?答案看起来一定是整数,那么我们显然想用 long long 解决。
前面消成上三角的时候,除的东西不能保证整除。
其中一种解决办法是用几个模数进行模意义下的消元,然后 \(CRT\) 合并即可。但是不太好写。
后来问了 zhou888 ,它告诉我一个神奇的做法,每次消去一行的时候,辗转相除,不断除掉共有的最多的那个就行了。
虽然多了个 \(\log n\) 的复杂度,但是确实好写啊。。。
然后复杂度就是 \(O(|S| \times n + |S|^3 \log n)\) 的。
代码
具体实现可以见代码。
#include <bits/stdc++.h>
#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl
using namespace std;
typedef long long ll;
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; }
inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
}
void File() {
#ifdef zjp_shadow
freopen ("3490.in", "r", stdin);
freopen ("3490.out", "w", stdout);
#endif
}
const int N = 14;
ll Mat[N][N];
void Gauss(int n) {
For (i, 1, n) {
For (j, i + 1, n) {
ll a = Mat[i][i], b = Mat[j][i];
while (b) {
ll tmp = a / b; a %= b; swap(a, b); swap(Mat[i], Mat[j]);
For (k, i, n + 1) Mat[j][k] -= tmp * Mat[i][k];
}
}
}
Fordown (i, n, 1) {
For (j, i + 1, n)
Mat[i][n + 1] -= Mat[i][j] * Mat[j][n + 1], Mat[i][j] = 0;
Mat[i][n + 1] /= Mat[i][i]; Mat[i][i] = 1;
}
}
int n, fail[N];
void Get_Fail(char *S) {
For (i, 2, strlen(S + 1)) {
int j = fail[i - 1];
while (j && S[i] != S[j + 1]) j = fail[j];
fail[i] = S[i] == S[j + 1] ? j + 1 : 0;
}
}
char str[N];
int main () {
File();
For (cases, 1, read()) {
int alpha = read(); scanf ("%s", str + 1);
int n = strlen(str + 1);
Get_Fail(str); Set(Mat, 0);
Mat[n + 1][n + 1] = alpha;
For (i, 0, n - 1) {
Mat[i + 1][i + 1] = Mat[i + 1][n + 2] = - alpha;
Rep (j, alpha) {
char cur = j + 'A';
int pos = i;
while (pos && str[pos + 1] != cur) pos = fail[pos];
if (str[pos + 1] == cur) ++ pos;
Mat[i + 1][pos + 1] += 1;
}
}
Gauss(n + 1);
printf ("Case %d:\n", cases);
printf ("%lld\n", Mat[1][n + 2]);
if (cases < casesend) putchar('\n');
}
return 0;
}
LA3490 Generator(KMP + 高斯消元)的更多相关文章
- [BZOJ4820]硬币游戏 KMP+高斯消元
4820: [Sdoi2017]硬币游戏 Time Limit: 10 Sec Memory Limit: 128 MB Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的 ...
- UVA 1358 - Generator(dp+高斯消元+KMP)
UVA 1358 - Generator option=com_onlinejudge&Itemid=8&page=show_problem&category=524& ...
- bzoj 4820: [Sdoi2017]硬币游戏【kmp+高斯消元】
有点神,按照1444的做法肯定会挂 注意到它的概率是相同的,所以可以简化状态 详见http://www.cnblogs.com/candy99/p/6701221.html https://www.c ...
- [Sdoi2017]硬币游戏 [高斯消元 KMP]
[Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...
- BZOJ.4820.[SDOI2017]硬币游戏(思路 高斯消元 哈希/AC自动机/KMP)
BZOJ 洛谷 建出AC自动机,每个点向两个儿子连边,可以得到一张有向图.参照 [SDOI2012]走迷宫 可以得到一个\(Tarjan\)+高斯消元的\(O((nm)^3)\)的做法.(理论有\(6 ...
- [BZOJ4820][SDOI2017]硬币游戏(高斯消元+KMP)
比较神的一道题,正解比较难以理解. 首先不难得出一个(nm)^3的算法,对所有串建AC自动机,将在每个点停止的概率作为未知数做高斯消元即可. 可以证明,AC自动机上所有不是模式串终止节点的点可以看成一 ...
- BZOJ4820 SDOI2017硬币游戏(概率期望+高斯消元+kmp)
容易想到的做法是建出AC自动机,高斯消元.然而自动机上节点数量是nm的. 注意到我们要求的变量只有n个,考虑将其他不用求的节点合并为一个变量.这个变量即表示随机生成一个串,其不包含任何一个模板串的概率 ...
- UVALive - 3490 Generator (AC自动机+高斯消元dp)
初始有一个空串s,从前n个大写字母中不断随机取出一个字母添加到s的结尾,出现模式串t时停止,求停止时s的长度期望. 这道题解法不唯一,比较无脑的方法是对模式串t建一个单串AC自动机,设u为自动机上的一 ...
- BZOJ 4820 [Sdoi2017]硬币游戏 ——期望DP 高斯消元
做法太神了,理解不了. 自己想到的是建出AC自动机然后建出矩阵然后求逆计算,感觉可以过$40%$ 用一个状态$N$表示任意一个位置没有匹配成功的概率和. 每种匹配不成功的情况都是等价的. 然后我们强制 ...
随机推荐
- Python IO模型
这篇博客是本人借鉴一些大神的博客并结合自己的学习过程写下的. 事件驱动模型 事件驱动模型是一种编程范式,这里程序的执行流由外部事件来决定.它的特点是包含一个事件循环,当外部事件发生时,不断从队列里取出 ...
- bug总结
1.被除数为0 2.Java 空指针异常(java.lang.NullPointerException) 即对象没有进行实例化便进行了使用.实例化的意义,就是将对象实例的地址赋值给对象符号. 比如 S ...
- net core 小坑杂记之配置文件读取(不定期更新)
其实很早就想写了,原想等积累差不多了再写的,但是发现遇到一个当时记下效果会比较好,所以就不定期更新这个系列了,后面获取会整个整理一下. 此篇记载net core入门时踩的一些坑,网上教程太少了,也不规 ...
- python的UnboundLocalError: local variable 'xxx' referenced b
一.意思: 本地变量xxx引用前没定义. 二.错误原因 在于python没有变量的声明 , 所以它通过一个简单的规则找出变量的范围 :如果有一个函数内部的变量赋值 ,该变量被认为是本地的,所以 ...
- [2017BUAA软工助教]常见问题Q&A
软工常见问题Q&A 目录: 1. 转会相关 1.1 转会流程是什么样子的? 1.2 团队中多人要求转会怎么办?(如何解散团队) 1.3 为什么有人想要转会? 1.4 软件工程课为什么有这一环节 ...
- 【学习总结】【Java】Git学习-上传本地已有代码到GitHub
< Git学成归来后的第一次实战 > 上传本地已有代码到GitHub 以之前学了一小半的Java基础教程代码为例 <深坑预警:在GitHub新建仓库那一步,不要勾选readme,不然 ...
- Linux 典型应用之缓存服务
memcached 安装和简单使用 yum install memcached 启动 -d 表示以守护进程的方式启动 memcached -d 安装telnet 它可以检测某个端口是否是通的,可以发送 ...
- css中如何做到容器按比例缩放
需求: 一般在响应式中,我们会要求视频的宽高比为16:9或4:3,这么一来就比较头大了.当用户改变浏览器宽度的时候(改变高度不考虑),视频的宽度变了,那么高度也得根据我们要求的16:9或4:3改变. ...
- [转帖]SAP一句话入门:Finacial & Controlling Accounting
SAP一句话入门:Finacial & Controlling Accounting http://blog.vsharing.com/MilesForce/A621147.html 财务,财 ...
- spring mvc常用注解总结
1.@RequestMapping@RequestMappingRequestMapping是一个用来处理请求地址映射的注解(将请求映射到对应的控制器方法中),可用于类或方法上.用于类上,表示类中的所 ...