【BZOJ4008】[HNOI2015]亚瑟王(动态规划)

题面

BZOJ

洛谷

题解

设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率。

分两种情况转移,即当前这张是否被触发。

不被触发的概率是\(\displaystyle (1-p[i])^{r-j}\),即一共会考虑\(r-j\)次,每次都不被触发。

被触发的概率呢?拿不被触发的概率减一下就好了也就是\(1-(1-p[i])^{r-j+1}\)。

所以得到转移:\(\displaystyle f[i][j]=f[i-1][j]*(1-p[i])^{r-j}+f[i-1][j-1]*(1-(1-p[i])^{r-j+1})\)。

这样是概率,考虑怎么算期望,显然期望当且仅当一张卡被选择到的时候才会计算,那么额外开一个数组\(g[i][j]\),含义同\(f\),改概率为期望,转移的时候额外考虑一下期望的转移就好了。

#include<iostream>
#include<cstdio>
using namespace std;
double f[222][135],g[222][135],p[222],pw[222][135];
int n,r,d[222];
int main()
{
int T;scanf("%d",&T);f[0][0]=1;
while(T--)
{
scanf("%d%d",&n,&r);
for(int i=1;i<=n;++i)scanf("%lf%d",&p[i],&d[i]);
for(int i=1;i<=n;++i)pw[i][0]=1,f[i][0]=g[i][0]=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=r;++j)
f[i][j]=g[i][j]=0,pw[i][j]=pw[i][j-1]*(1-p[i]);
for(int i=1;i<=n;++i)
for(int j=0;j<=r&&j<=i;++j)
{
f[i][j]+=f[i-1][j]*pw[i][r-j],g[i][j]+=g[i-1][j]*pw[i][r-j];
if(j)f[i][j]+=f[i-1][j-1]*(1-pw[i][r-j+1]),g[i][j]+=(g[i-1][j-1]+d[i]*f[i-1][j-1])*(1-pw[i][r-j+1]);
}
double ans=0;for(int i=0;i<=r;++i)ans+=g[n][i];
printf("%.10lf\n",ans);
}
return 0;
}

【BZOJ4008】[HNOI2015]亚瑟王(动态规划)的更多相关文章

  1. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  2. Bzoj4008 [HNOI2015]亚瑟王

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 1009  Solved: 605[Submit][Status] ...

  3. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  4. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  5. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  6. bzoj4008: [HNOI2015]亚瑟王【期望dp】

    一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...

  7. BZOJ4008 : [HNOI2015]亚瑟王(期望dp)

    题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...

  8. bzoj4008: [HNOI2015]亚瑟王 dp

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4008 思路 神仙啊 \(f[i][j]表示第i个点有j次机会(不管成功与否)\) \(f ...

  9. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

  10. 【文文殿下】[BZOJ4008] [HNOI2015] 亚瑟王

    题解 这是一个经典的概率DP模型 设\(f_{i,j}\)表示考虑到前\(i\)张牌,有\(j\)轮没打出牌的可能性,那么显然\(f_{0,r} = 1\). 考虑第\(i+1\)张牌,他可能在剩下的 ...

随机推荐

  1. iOS开发——无网占位图的实现

    https://www.jianshu.com/p/d537393fe247 https://github.com/wyzxc/CQPlaceholderViewhttps://github.com/ ...

  2. flex实现三栏等分布局

    前言 在实际开发中,我们经常会想要实现的一种布局方式就是三栏等分布局,那么我们如何来解决这个问题呢? 解决 方法一:flex 外层容器也就是ul设置display:flex,对项目也就是li设置fle ...

  3. [转帖]mimikatz 学习

    mimikatz mimikatz 2.0 vient de sortir en version alpha binaires : https://github.com/gentilkiwi/mimi ...

  4. ArrayList性能短板深入分析

    ArrayList的数据结构主体是Object[]数组,数组对象在内存的位置是成块成块的. 1.对数组进行非尾部修改,会引发System.arrayCopy()行为.这就需要对后半部要移动的对象进行内 ...

  5. 转《vue引入第三方js库》

    一.绝对路径直接引入,全局可用 二.绝对路径直接引入,配置后,import 引入后再使用 三.webpack中配置 alias,import 引入后再使用 四.webpack 中配置 plugins, ...

  6. restful 规范(建议)

    需求:开发cmdb,对用户进行管理. 做前后端分离,后端写api(URL),对用户表进行增删改查,应该写四个URL(还要给文档(返回值,返回,请求成功,干嘛,失败,干嘛)),然后分别写视图函数. ht ...

  7. app自动化测试Appium+python

    一.node.js安装 https://nodejs.org/en/download/ ##一直下一步 ###cmd查看 二.  .NET Framework安装 https://www.micros ...

  8. 莫烦theano学习自修第十天【保存神经网络及加载神经网络】

    1. 为何保存神经网络 保存神经网络指的是保存神经网络的权重W及偏置b,权重W,和偏置b本身是一个列表,将这两个列表的值写到列表或者字典的数据结构中,使用pickle的数据结构将列表或者字典写入到文件 ...

  9. idea 通过命令操作git

    关于如何把git(远程)端项目拉取到idea端的操作可以观看:https://blog.csdn.net/autfish/article/details/52513465 在本地向远程提交文件git ...

  10. Windows7 (Win7) 配置Windows Update 时失败 正在还原更改

    用WinPE启动后,进入Windows\WinSxS目录,想办法删掉pending.xml和reboot.xml