Coursera, Deep Learning 4, Convolutional Neural Networks - week1
CNN 主要解决 computer vision 问题,同时解决input X 维度太大的问题.


Edge detection
下面演示了convolution 的概念

下图的 vertical edge 看起来有点厚,但是如果图片远比6x6像素大的话,就会看到效果非常不错.



除了前面讲过的第一种filter, 还有两种 (Sobel filter, Scharr filter)

接下来会讲到 CNN 的两个重要的buiding block - padding, strided convolution. 也就是对前面所讲的basic convolution 的两种优化。
Padding
basic convolution 有两个问题, 一个是shrik output, 使得图像越来越小, 另一个是 throw away info from edge, 就是边缘的信息使用率不高. 为了解决这两个问题,在input image外围加了一个边框,就是padding.

那么怎么来选取padding 值的大小呢?有两种方法 'Valid' (no padding), 和 'Same' (output size is same as input size). 要达到Same 的效果,只需要满足 p = (f-1)/2。 f 值通常选取奇数,Andrew 给出两个原因,一个是可以达到Same的效果,一个是可以在filter 里有center pixel 来描述位置.

Strided convolution
如果要使得output size 更小,可以用strided convolution 方法,就是计算卷积的时候使得步长s更大。


实际上在deep learing 里经常说的convolution 对应的是数学概念里的cross-correlation, 两者的区别是,数学里的convolution 比cross-correlation 多一步对filter翻转的操作. 也就是说deep learning里的convoluton 叫做cross-correlation更确切一些。但是翻转那一步对deep learning 没有影响,所以deep learning 里就用convolution 来指代cross-correlation. Andrew 提到这个是为了让读者在读数学论文时候不至于困惑。

Convolution over volumes
前面讲的都是对2D 的image有卷积,现在开始讲对3D 的image 怎么求卷积。


前面一直在讲用一个filter 来识别 vertical 或者 horizotal edge, 那如果要同时识别vertical 和 horizotal edge呢?答案是可以同时使用两个filter, 具体如下图。
这里提一下,第3个维度可以叫channel, 也有人叫depth.

One Layer of convolutional network
一层convolution network 可以和传统的neural network 类比如下图。

下图解释了convolutional network 中,无论input layer 的 X 维度多大(比如5000维),我们都可以用这10个filter 来充当W[1] 的角色,同时保持280个parameters不变。

下面是CNN中的一些notation. 需要说明的是本课程用了n[H][l] * n[W][l] * n[C][l] 这样的顺序,在CNN里也有用 n[C][l] * n[H][l] * n[W][l] 这样的顺序,效果一样.
Simple convolutional network example
下图是一个多层ConvNet 网络,通常image size 会逐渐减小,而channel size会逐渐增大.

通常一个convolutional network里不仅有convoluional layer, 还会经常看到 pooling layer, 和fully connected layer.

Pooling layers
先看Max pooling, 就是根据filter 的大小在input image里取最大值。一旦filter 的维度f 和步长 s 确定了,就可以从input里得出output, 无需计算filter 的参数。

刚才是看的2D的情况,如果input lay 是3D的就是说有channel, 那么output 也会有相同的channel.

Max pooling 是求最大值,如果是求平均值,就叫average pooling. Average pooling 不常用.

通常padding=0. f, s 最常见的值如下图.

Typical CNN example
按照习惯conv layer 和 pooling layer 合起来叫一个network layer, 这是只计算了有weight 的conv layer 而pooling layer 没有weight 就没有算.
FC means Fully Connected layer. 其实就是传统的network layer.


Why convolutions?
相比于传统的fully connected network layer, convolutional layer 的parameters少的多.

为什么parameters 少了那么多,还能达到很好的performance呢?
有以下两个原因:
feature sharing: 共享了3x3的filter,这个filter 的参数对每次convolutional 计算都是一样的。
sparsity of connections: output 中的一部分只取决于 input 中的一部分。


Coursera, Deep Learning 4, Convolutional Neural Networks - week1的更多相关文章
- Coursera, Deep Learning 4, Convolutional Neural Networks - week4,
Face recognition One Shot Learning 只看一次图片,就能以后识别, 传统deep learning 很难做到这个. 而且如果要加一个人到数据库里面,就要重新train ...
- Coursera, Deep Learning 4, Convolutional Neural Networks - week2
Case Study (Note: 红色表示不重要) LeNet-5 起初用来识别手写数字灰度图片 AlexNet 输入的是227x227x3 的图片,输出1000 种类的结果 VGG VGG比Ale ...
- Coursera, Deep Learning 4, Convolutional Neural Networks, week3, Object detection
学习目标 Understand the challenges of Object Localization, Object Detection and Landmark Finding Underst ...
- Deep Learning Tutorial - Convolutional Neural Networks(LENET)
CNN很多概述和要点在CS231n.Neural Networks and Deep Learning中有详细阐述,这里补充Deep Learning Tutorial中的内容.本节前提是前两节的内容 ...
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
- 论文阅读:MDNet: Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
前言 CVPR2016 来自Korea的POSTECH这个团队 大部分算法(例如HCF, DeepLMCF)只是用在大量数据上训练好的(pretrain)的一些网络如VGG作为特征提取器,这些做法 ...
随机推荐
- 解题:CF622F The Sum of the k-th Powers
题面 TJOI2018出CF原题弱化版是不是有点太过分了?对,就是 TJOI2018 教科书般的亵渎 然而我这个问题只会那个题的范围的m^3做法 回忆一下1到n求和是二次的,平方求和公式是三次的,立方 ...
- 洛谷P3810 陌上花开 CDQ分治(三维偏序)
好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...
- java List集合
List集合包括四种类,分别是ArrayList.LinkedList.Vector.Stack. ArrayList:元素的存储是顺序存储,可以根据数组的下标查询,查询速度快,但是在删除和插入元素时 ...
- please select android sdk
- qml: C++调用qml函数
C++调用qml函数,是通过下面的函数实现的: bool QMetaObject::invokeMethod(QObject *obj, const char *member, Qt::Connect ...
- CSS样式链接和文字常用属性
行内: <div style="color:red;"></div> 内嵌<style>div{background-color:red;}&l ...
- go 终端读写、文件读写
go 终端读写 操作终端相关文件句柄常量 os.Stdin:标准输入 os.Stdout:标准输出 os.Stderr:标准错误输出 示例: package main import ( "b ...
- flask flash消息
请求完成,让用户知道状态发生了变化,可以使用flash确认消息 示例: xx.py from flask import Flask,render_template,request,redirect,u ...
- hadoop 开发环境搭建
一,安装java环境 添加java环境变量 vi /etc/profile # add by tank export JAVA_HOME=/data/soft/jdk/jdk1.7.0_71 ex ...
- List数组
大家好,我是蜀云泉.我的博文之中存在的不足之处希望大家包涵. 今天学习unity时,在实现某个功能的脚本中发现了List数组.关于List数组的问题我在学C#时已经接触了一点,但是我比较粗心和浮躁以前 ...
