在给定的数据集,我们假设数据是正常的 ,现在需要知道新给的数据Xtest中不属于该组数据的几率p(X)。

异常检测主要用来识别欺骗,例如通过之前的数据来识别新一次的数据是否存在异常,比如根据一个用户以前的使用习惯(数据)来判断这次使用的用户是不是以前的用户。或者根据之前CPU正常运行时候的的用量数据来判断当前状态下的CPU是否正常工作。

这里我们通过密度估计来进行判断:if   P(X) >ε时候,为normal(正常)<ε 的时候为异常 。

我们用x(i)来表示用户的第i个特征,模型P(x)= 我们其属于一组数据的可能性

在这里我们会用到高斯分布(二项分布),在高斯分布中,我们 对于方差通常只除以m来得到μ和σ而不是统计学中的m-1

异常检测算法:

对于给定的数据集x(1)...x(m),我们要针对每一个特征计算出μ和σ的估计值。

一旦我们获得了平均值和方差的估计值,给定的一个新的训练实例,根据模型计算我们就可以得出p(x)

我们选择一个 ε,将p(x)=ε作为我们的判定边界,当p(x)> ε的时候预测数据为正常数据,否则为异常数据。

异常检测算是一个非监督学习算法,这意味着我们无法根据结果变量Y 的值来告诉我们是否异常,我们可以从带标记的数据着手,选取一部分正常的数据用来训练和构建,然后用剩下的正常样本和测试样本混合构成交叉检验集和测试集。

在这里我们举一个栗子,用来更详细的描述异常检测算法。

例如:我们有 10000 台正常引擎的数据,有 20 台异常引擎的数据。 我们这样分配数
据:
6000 台正常引擎的数据作为训练集
2000 台正常引擎和 10 台异常引擎的数据作为交叉检验集
2000 台正常引擎和 10 台异常引擎的数据作为测试集
具体的评价方法如下:
1. 根据测试集数据,我们估计特征的平均值和方差并构建 p(x)函数
2. 对交叉检验集,我们尝试使用不同的 ε 值作为阀值,并预测数据是否异常,根据 F1
值或者查准率与查全率的比例来选择 ε
3. 选出 ε 后,针对测试集进行预测,计算异常检验系统的 F1 值, 或者查准率与查全
率之比

之前我们构建的异常检测系统也使用了带标记的数据,与监督学习有些相似,下面的对
比有助于选择采用监督学习还是异常检测:
两者比较:

【机器学习】异常检测算法(I)的更多相关文章

  1. 机器学习:异常检测算法Seasonal Hybrid ESD及R语言实现

    Twritters的异常检测算法(Anomaly Detection)做的比较好,Seasonal Hybrid ESD算法是先用STL把序列分解,考察残差项.假定这一项符合正态分布,然后就可以用Ge ...

  2. kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归

    使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...

  3. 异常检测算法--Isolation Forest

    南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结. iTree 提到森林 ...

  4. 异常检测算法:Isolation Forest

    iForest (Isolation Forest)是由Liu et al. [1] 提出来的基于二叉树的ensemble异常检测算法,具有效果好.训练快(线性复杂度)等特点. 1. 前言 iFore ...

  5. 如何开发一个异常检测系统:使用什么特征变量(features)来构建异常检测算法

    如何构建与选择异常检测算法中的features 如果我的feature像图1所示的那样的正态分布图的话,我们可以很高兴地将它送入异常检测系统中去构建算法. 如果我的feature像图2那样不是正态分布 ...

  6. 异常检测(Anomaly detection): 异常检测算法(应用高斯分布)

    估计P(x)的分布--密度估计 我们有m个样本,每个样本有n个特征值,每个特征都分别服从不同的高斯分布,上图中的公式是在假设每个特征都独立的情况下,实际无论每个特征是否独立,这个公式的效果都不错.连乘 ...

  7. 异常检测算法的Octave仿真

    在基于高斯分布的异常检测算法一文中,详细给出了异常检测算法的原理及其公式,本文为该算法的Octave仿真.实例为,根据训练样例(一组网络服务器)的吞吐量(Throughput)和延迟时间(Latenc ...

  8. 异常检测算法Robust Random Cut Forest(RRCF)关键定理引理证明

    摘要:RRCF是亚马逊发表的一篇异常检测算法,是对周志华孤立森林的改进.但是相比孤立森林,具有更为扎实的理论基础.文章的理论论证相对较为晦涩,且没给出详细的证明过程.本文不对该算法进行详尽的描述,仅对 ...

  9. 时间序列异常检测算法S-H-ESD

    1. 基于统计的异常检测 Grubbs' Test Grubbs' Test为一种假设检验的方法,常被用来检验服从正太分布的单变量数据集(univariate data set)\(Y\) 中的单个异 ...

随机推荐

  1. python目录结构

    import sys,os #__file__取得当前文件名,pycharm会自动加上完整路径 #os.path.dirname取得上一级目录 #os.path.abspath取得绝对路径 BASE_ ...

  2. sys.exit(main(sys.argv[1:]))

    sys.argv sys.argv[]说白了就是一个从程序外部获取参数的桥梁. 首先我们需要import sys,sys是python3的一个标准库,也就是一个官方的模块.封装了一些系统的信息和接口, ...

  3. js 字符串截取函数substr,substring,slice之间的差异

    js 字符串的截取,主要有三个函数,一般使用三个函数:substr,substring,slice. 而这三个函数是不完全一样的,平时很难记住,在这里做下笔记,下次遇到的时候,直接从这里参考,调用合适 ...

  4. es集群搭建

    1.复制5份es,版本要相同,且各个节点上jdk版本也要相同,否则会报数据同步格式不一致  invalid internal transport message format. 2.配置elastic ...

  5. 恢复oracle 11g 的System及sys用户的密码

    进入E:\app\orcl\product\11.2.0\dbhome_1\database目录下找到PWDorcl.ora备份后删除文件,orcl是数据库的实例名 以管理员身份打开cmd,执行 or ...

  6. Nagios监控

    1.Nagios监控软件 Nagios是一款开源的免费网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报警 ...

  7. Namenode启动报错Operation category JOURNAL is not supported in state standby

    org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.ipc.StandbyException): Operation category JO ...

  8. ajax、json、jsonp

    这章分享下ajax.json.jsonp的学习记录,不得不说这真是些令人激动的技术. 推荐文章: https://segmentfault.com/a/1190000012469713 http:// ...

  9. linux大文件读取

    在生产环境中有时候可能会遇到大文件的读取问题,但是大文件读取如果按照一般的手法.如cat这种都是对io的一个挑战,如果io扛得住还好,如果扛不住 造成的后果,如服务器内存奔溃,日志损坏 方法一: se ...

  10. 云笔记项目- 上传文件报错"java.lang.IllegalStateException: File has been moved - cannot be read again"

    在做文件上传时,当写入上传的文件到文件时,会报错“java.lang.IllegalStateException: File has been moved - cannot be read again ...