题目链接

思路

这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数

代码

#include<cstdio>
#include<iostream>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long ll;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
int main() {
int t = read();
while(t--) {
ll n = read();
if(!(n % 4)) puts("Roy wins!");
else puts("October wins!");
}
return 0;
}

一言

他说,你知道吗?这个世界,最难过的幸福,就是你许诺她的未来模样,别人替你同她完满。 ——凉生,我们可不可以不忧伤

[luogu4860][Roy&October之取石子II]的更多相关文章

  1. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  2. P4860 Roy&October之取石子II

    4的倍数不行,之间的数都可以到4的倍数,而6的倍数不能到4的倍数 #include <iostream> #include <cstdio> #include <queu ...

  3. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  4. 洛谷——P4018 Roy&October之取石子

    P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自 ...

  5. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  6. P4018 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...

  7. 洛谷P4018 Roy&October之取石子

    题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

随机推荐

  1. linux audit审计(7-1)--读懂audit日志

     auid=0 auid记录Audit user ID,that is the loginuid.当我使用lbh用户登录系统时,再访问audit_test,此时记录的auid为1001,具体日志如下: ...

  2. Ansible入门与实践

    一.ansible介绍 Ansible是一个简单的自动化运维管理工具,基于Python语言实现,由Paramiko和PyYAML两个关键模块构建,可用于自动化部署应用.配置.编排task(持续交付.无 ...

  3. build/temp.linux-x86_64-2.7/_openssl.c:493:30: fatal error: openssl/opensslv.h: No such file or directory

    解决:apt-get install libssl-dev apt install python-dev(这个可能和那个错误关系不大)

  4. Appium之开发计算器自动化测试脚本Demo

    1.依赖包 <!-- https://mvnrepository.com/artifact/io.appium/java-client --> <dependency> < ...

  5. Lodop如何打印直线

    Lodop打印设计提供了可视化设计,生成代码的方便,在打印设计界面上,选择添加打印项的时候,可以看到没有添加直线选项,可添加斜线,然后把添加的斜线调整成直线:线宽=高 -----水平直线线宽=宽--- ...

  6. codeforces498C

    Array and Operations CodeForces - 498C You have written on a piece of paper an array of n positive i ...

  7. Linux 集锦(持续更新中)

    // 获取文件夹下的代码总行数 find . -name "*.*" | xargs wc -l // ls 排序 ls -lt 按照最后修改时间降序 ls -lrt 按照时间升序 ...

  8. jsp页面中 <%%> <%! %>, <%=%> <%-- --%>有什么区别

    <%%> 可添加java代码片段   <%! %>       可添加java方法   <%=%>       变量或表达式值输出到页面 <%-- --%&g ...

  9. U盘快速启动热键

    各个品牌电脑U盘快速启动热键如下:

  10. BZOJ4128Matrix——hash+矩阵乘法+BSGS

    题目描述 给定矩阵A,B和模数p,求最小的x满足 A^x = B (mod p) 输入 第一行两个整数n和p,表示矩阵的阶和模数,接下来一个n * n的矩阵A.接下来一个n * n的矩阵B 输出 输出 ...