【洛谷P3810】陌上花开
题目大意:给定一个三维空间点的坐标,求对于任意一个点三维均小于等于这个点的点个数。
题解:学会了简单的 cdq 分治。
首先,先将第一维从小到大排序,再用类似归并排序的操作对第二维进行排序,在第二维合并的过程中,用树状数组维护第三维,统计左半部分对右半部分答案的贡献。
需要注意的几点问题,如下:
- 如果有几个点的三个维度完全相同的话,需要做去重处理,因为每个点在归并的时候只会将在这个点左边的点计入该点的答案贡献,但是实际上对于这些相同的点来说,其他所有相同的点对任意一个点都有相同的答案贡献。
- 在 cdq 分治进行的过程中,原本有序的第一维会变得无序,但是仍然满足左半部分的 x 小于右半部分的 x,而统计答案贡献也只是统计左半部分对右半部分的贡献,因此不会出现答案错误的问题。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
struct opt{
int x,y,z,cnt,num;
bool operator<(const opt &rhs)const{
return this->x==rhs.x?(this->y==rhs.y?this->z<rhs.z:this->y<rhs.y):this->x<rhs.x;
}
}a[maxn],d[maxn],tmp[maxn];
int n,m,tot,ans[maxn];
void read_and_parse(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
sort(a+1,a+n+1);
for(int i=1;i<=n;i++){
if(a[i].x!=a[i-1].x||a[i].y!=a[i-1].y||a[i].z!=a[i-1].z)d[++tot]=a[i];
++d[tot].cnt;
}
}
int bit[maxn<<1];
inline void modify(int pos,int val){for(int i=pos;i<=m;i+=i&-i)bit[i]+=val;}
inline int query(int pos){int res=0;for(int i=pos;i;i-=i&-i)res+=bit[i];return res;}
void cdq(int l,int r){
if(l==r)return;
int mid=l+r>>1;
cdq(l,mid),cdq(mid+1,r);
int x=l,y=mid+1;
for(int i=l;i<=r;i++){
if(y>r||(x<=mid&&d[x].y<=d[y].y))tmp[i]=d[x++],modify(tmp[i].z,tmp[i].cnt);
else tmp[i]=d[y++],tmp[i].num+=query(tmp[i].z);
}
for(int i=l;i<=mid;i++)modify(d[i].z,-d[i].cnt);
for(int i=l;i<=r;i++)d[i]=tmp[i];
}
void solve(){
cdq(1,tot);
for(int i=1;i<=tot;i++)ans[d[i].num+d[i].cnt-1]+=d[i].cnt;
for(int i=0;i<n;i++)printf("%d\n",ans[i]);
}
int main(){
read_and_parse();
solve();
return 0;
}
【洛谷P3810】陌上花开的更多相关文章
- 洛谷P3810 陌上花开(CDQ分治)
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/st ...
- BZOJ3262/洛谷P3810 陌上花开 分治 三维偏序 树状数组
原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html 题目传送门 - BZOJ3262 题目传送门 - 洛谷P3810 题意 有$n$个元素,第 ...
- 洛谷P3810 陌上花开 CDQ分治(三维偏序)
好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...
- 洛谷P3810 陌上花开 (cdq)
最近才学了cdq,所以用cdq写的代码(这道题也是cdq的模板题) 这道题是个三维偏序问题,先对第一维排序,然后去掉重复的,然后cdq分治即可. 为什么要去掉重复的呢?因为相同的元素互相之间都能贡献, ...
- 洛谷 P3810 【模板】三维偏序(陌上花开) (cdq分治模板)
在solve(L,R)中,需要先分治solve两个子区间,再计算左边区间修改对右边区间询问的贡献. 注意,计算额外的贡献时,两子区间各自内部的顺序变得不再重要(不管怎么样左边区间的都发生在右边之前), ...
- [洛谷P3810]【模板】三维偏序(陌上花开)
题目大意:有$n$个元素,第$i$个元素有三个属性$a_i,b_i,c_i$,设$f(i)=\sum\limits_{i\not = j}[a_j\leqslant a_i,b_j\leqslant ...
- [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解
原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...
- 【算法学习】【洛谷】cdq分治 & P3810 三维偏序
cdq是何许人也?请参看这篇:https://wenku.baidu.com/view/3b913556fd0a79563d1e7245.html. 在这篇论文中,cdq提出了对修改/询问型问题(Mo ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
随机推荐
- 2.请介绍一下List和ArrayList的区别,ArrayList和HashSet区别
第一问: List是接口,ArrayList实现了List接口. 第二问: ArrayList实现了List接口,HashSet实现了Set接口,List和Set都是继承Collection接口. A ...
- Centos rpm包安装PHP所需包
yum -y install php php-devel php-fpm php-xml php-pdo php-ldap php-mysql
- CSS3圆角详解(border-radius)
1.CSS3圆角的优点 传统的圆角生成方案,必须使用多张图片作为背景图案.CSS3的出现,使得我们再也不必浪费时间去制作这些图片了,而且还有其他多个优点: 减少维护的工作量.图片文件的生成.更新.编写 ...
- 在ASP.NET程序中用程序动态向<head>便签里添加<meta>标签
在使用ASP.NET框架开发: 若要在Html网页中加入<meta>设置,但想通过程序动态加入: 1.如果是ASP.NET4.0以前版本: 使用HtmlMeta类加入<meta> ...
- Python图形用户界面
1.使用Tkinter创建图形用户界面的步骤 (1)导入Tkinter模块,使用import Tkinter或from Tkinter import * (2)创建顶层窗口对象容器,使用top = T ...
- 一、ABP框架框架摘要
ABP框架几点说明: 一.什么是ABP ABP是一个建立在最新的ASP.NET的MVC和Web API技术的应用框架.它可以很容易地使用依赖注入.日志记录.验证.异常处理.本地化等,也使用流行的框架和 ...
- vim指令
编辑-->输入: i: 在当前光标所在字符的前面,转为输入模式: a: 在当前光标所在字符的后面,转为输入模式: o: 在当前光标所在行的下方,新建一行,并转为输入模式: I:在当前光标所在行的 ...
- css 引用自定义图标
1.进入阿里图标库搜索需要的图标(搜索“图标"是全部的) 2.选择需要的图标 下载 下载svg 格式 进入https://icomoon.io/ css引用库 解压下载的压缩包 ok ...
- CUDA开发
CUB库 https://nvlabs.github.io/cub/index.html
- 如何在Ubuntu 18.04上安装Django
Django是一个免费的开源高级Python Web框架,旨在帮助开发人员构建安全,可扩展和可维护的Web应用程序. 根据您的需要,有不同的方法来安装Django.它可以使用pip在系统范围内安装或在 ...