e很小时:

import gmpy2
from functools import reduce
from Crypto.Util.number import long_to_bytes
def CRT(items):
N = reduce(lambda x, y: x * y, (i[1] for i in items))
result = 0
for a, n in items:
m = N // n
d, r, s = gmpy2.gcdext(n, m)
if d != 1:
raise Exception("Input not pairwise co-prime")
result += a * s * m
return result % N, N
# e, n, c
e = 0x3
n=[0x52d483c27cd806550fbe0e37a61af2e7cf5e0efb723dfc81174c918a27627779b21fa3c851e9e94188eaee3d5cd6f752406a43fbecb53e80836ff1e185d3ccd7782ea846c2e91a7b0808986666e0bdadbfb7bdd65670a589a4d2478e9adcafe97c6ee23614bcb2ecc23580f4d2e3cc1ecfec25c50da4bc754dde6c8bfd8d1fc16956c74d8e9196046a01dc9f3024e11461c294f29d7421140732fedacac97b8fe50999117d27943c953f18c4ff4f8c258d839764078d4b6ef6e8591e0ff5563b31a39e6374d0d41c8c46921c25e5904a817ef8e39e5c9b71225a83269693e0b7e3218fc5e5a1e8412ba16e588b3d6ac536dce39fcdfce81eec79979ea6872793]
c=[0x10652cdfaa6b63f6d7bd1109da08181e500e5643f5b240a9024bfa84d5f2cac9310562978347bb232d63e7289283871efab83d84ff5a7b64a94a79d34cfbd4ef121723ba1f663e514f83f6f01492b4e13e1bb4296d96ea5a353d3bf2edd2f449c03c4a3e995237985a596908adc741f32365]
data = list(zip(c, n))
x, n = CRT(data)
m = gmpy2.iroot(gmpy2.mpz(x), e)[0].digits()
print(m)
print(long_to_bytes(int(m)).decode())

解形如\(x^2(modp)\equiv r\)的同余方程

V&N2020 公开赛 easy_RSA

from random import randint
from gmpy2 import *
from Crypto.Util.number import * def getprime(bits):
while 1:
n = 1
while n.bit_length() < bits:
n *= next_prime(randint(1,1000))
if isPrime(n - 1):
return n - 1 m = bytes_to_long(b'flag{************************************}') p = getprime(505)
q = getPrime(512)
r = getPrime(512)
assert m < q n = p * q * r
e = 0x10001
d = invert(q ** 2, p ** 2)
c = pow(m, 2, r)
cipher = pow(c, e, n) print(n)
print(d)
print(cipher) ''' 7941371739956577280160664419383740967516918938781306610817149744988379280561359039016508679365806108722198157199058807892703837558280678711420411242914059658055366348123106473335186505617418956630780649894945233345985279471106888635177256011468979083320605103256178446993230320443790240285158260236926519042413378204298514714890725325831769281505530787739922007367026883959544239568886349070557272869042275528961483412544495589811933856131557221673534170105409
7515987842794170949444517202158067021118454558360145030399453487603693522695746732547224100845570119375977629070702308991221388721952258969752305904378724402002545947182529859604584400048983091861594720299791743887521228492714135449584003054386457751933095902983841246048952155097668245322664318518861440
1618155233923718966393124032999431934705026408748451436388483012584983753140040289666712916510617403356206112730613485227084128314043665913357106301736817062412927135716281544348612150328867226515184078966397180771624148797528036548243343316501503364783092550480439749404301122277056732857399413805293899249313045684662146333448668209567898831091274930053147799756622844119463942087160062353526056879436998061803187343431081504474584816590199768034450005448200 '''

c = pow(m, 2, r)

from sympy.ntheory.residue_ntheory import nthroot_mod
m=nthroot_mod(c,2,r)

完整exp:

from gmpy2 import *
from Crypto.Util.number import *
from sympy.ntheory.residue_ntheory import nthroot_mod
p=102634610559478918970860957918259981057327949366949344137104804864768237961662136189827166317524151288799657758536256924609797810164397005081733039415393
q=7534810196420932552168708937019691994681052660068275906973480617604535381306041583841106383688654426129050931519275383386503174076258645141589911492908993
r=10269028767754306217563721664976261924407940883784193817786660413744866184645984238866463711873380072803747092361041245422348883639933712733051005791543841
e=65537
phi=(p-1)*(q-1)*(r-1)
d=invert(e,phi)
n=p*q*r
cipher=1618155233923718966393124032999431934705026408748451436388483012584983753140040289666712916510617403356206112730613485227084128314043665913357106301736817062412927135716281544348612150328867226515184078966397180771624148797528036548243343316501503364783092550480439749404301122277056732857399413805293899249313045684662146333448668209567898831091274930053147799756622844119463942087160062353526056879436998061803187343431081504474584816590199768034450005448200
c=pow(cipher,d,n)
m=nthroot_mod(c,2,r)
print(long_to_bytes(m))

Rabin RSA:

import gmpy2
import libnum
from Crypto.Util.number import long_to_bytes p=13934102561950901579
q=14450452739004884887
e = 2
c = 20442989381348880630046435751193745753
n = p*q
# Rebin算法
mp = gmpy2.powmod(c, (p+1)//4, p)
mq = gmpy2.powmod(c, (q+1)//4, q) gcd1, a, b= gmpy2.gcdext(p, q) # 欧几里得扩展a*p+b*q=gcd1
r=(a*p*mq+b*q*mp)%n
r_=n-r
s=(a*p*mq-b*q*mp)%n
s_=n-s print(f"r={libnum.n2s(int(r))}")
print(f"r_={libnum.n2s(int(r_))}")
print(f"s={libnum.n2s(int(s))}")
print(f"s_={libnum.n2s(int(s_))}")

pq生成不当:

from Crypto.Util.number import *
import sympy
#from secrets import flag def get_happy_prime():
p = getPrime(512)
q = sympy.nextprime(p ^ ((1 << 512) - 1))
return p, q m = bytes_to_long(flag)
p, q = get_happy_prime()
n = p * q
e = 65537
print(n)
print(pow(m, e, n))
# 24852206647750545040640868093921252282805229864862413863025873203291042799096787789288461426555716785288286492530194901130042940279109598071958012303179823645151637759103558737126271435636657767272703908384802528366090871653024192321398785017073393201385586868836278447340624427705360349350604325533927890879
# 14767985399473111932544176852718061186100743117407141435994374261886396781040934632110608219482140465671269958180849886097491653105939368395716596413352563005027867546585191103214650790884720729601171517615620202183534021987618146862260558624458833387692782722514796407503120297235224234298891794056695442287

q等于p取反的下一个素数

\[q \approx p \oplus ((1<<512) -1)
\]

\[q=(1<<512)-p+r
\]

\[p+q \approx (1<<512)
\]

所以我们可以构造

\[n=\sqrt{\big( \frac{p+q}{2} \big) ^2-\big( \frac{p-q}{2} \big)^2}
\]

因此可以求出\(p-q\)的值,因此 \(p=\frac{(p+q)-(p-q)}{2}\)

因此可以求出p的值

exp1:(以p能不能整除n作为判断条件)

from Crypto.Util.number import *
import gmpy2
n=24852206647750545040640868093921252282805229864862413863025873203291042799096787789288461426555716785288286492530194901130042940279109598071958012303179823645151637759103558737126271435636657767272703908384802528366090871653024192321398785017073393201385586868836278447340624427705360349350604325533927890879
c=14767985399473111932544176852718061186100743117407141435994374261886396781040934632110608219482140465671269958180849886097491653105939368395716596413352563005027867546585191103214650790884720729601171517615620202183534021987618146862260558624458833387692782722514796407503120297235224234298891794056695442287 t1=1<<512
p=(2**512+gmpy2.iroot((2**512)**2-4*n,2)[0])//2
p=int(p)
while n%p!=0:
p=gmpy2.next_prime(p)
q=n//p
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
print(long_to_bytes(m))

exp2:(以\(\sqrt{(p+q)^2-4n}\)能不能开方作为判断条件)

from Crypto.Util.number import *
import gmpy2
n=24852206647750545040640868093921252282805229864862413863025873203291042799096787789288461426555716785288286492530194901130042940279109598071958012303179823645151637759103558737126271435636657767272703908384802528366090871653024192321398785017073393201385586868836278447340624427705360349350604325533927890879
c=14767985399473111932544176852718061186100743117407141435994374261886396781040934632110608219482140465671269958180849886097491653105939368395716596413352563005027867546585191103214650790884720729601171517615620202183534021987618146862260558624458833387692782722514796407503120297235224234298891794056695442287 for r in range(10000000000):
t1=(1<<512)-1+r
t2,s=gmpy2.iroot(t1**2-4*n,2)
if s:
p=(t1+t2)//2
q=n//p
d=gmpy2.invert(e,(p-1)*(q-1))
print(long_to_bytes(pow(c,d,n)))
break

\(p^2+ q^2=N\)

使用sagemath的p,q=two_squares(N)

# #sage9.3
# from Crypto.Util.number import *
# flag = b'Kicky_Mu{KFC_v_me_50!!!}'
# p = getPrime(256)
# q = getPrime(256)
# n = p*q^3
# e = 0x10001
# N = pow(p, 2) + pow(q, 2)
# m = bytes_to_long(flag)
# c = pow(m,e,n)
#
# print(c)
# print(N)
from Crypto.Util.number import * c = 34992437145329058006346797890363070594973075282993832268508442432592383794878795192132088668900695623924153165395583430068203662437982480669703879475321408183026259569199414707773374072930515794134567251046302713509056391105776219609788157691337060835717732824405538669820477381441348146561989805141829340641
N = 14131431108308143454435007577716000559419205062698618708133959457011972529354493686093109431184291126255192573090925119389094648901918393503865225710648658
p,q=two_squares(N)
n = p * pow(q, 3)
e = 0x10001
phi = (p - 1) * (pow(q, 3) - pow(q, 2))
d = inverse(e, phi)
m = pow(c, d, n)
print(long_to_bytes(m))

Coppersmith

已知m的高位,求m

n=10934282759418716864083387149400358148885247110933867252983794425632302624483291838978054379912661191455027376539730843211768681711588034738804296785076819
c=199928678441564572513071545433948014294972061145992950128884609861283198064457810780158231851803305318741555460032075238932950496972965422017125
(m>>72)<<72=584734024210391580014049648429032467639773954048
e=3

在\(Zmod(n)\)下,有\(m^3-c \equiv 0 \rightarrow (m_{high}+x)^3-c\equiv 0\)

exp:

from Crypto.Util.number import *

def phase2(high_m, n, c):
R.<x> = PolynomialRing(Zmod(n), implementation='NTL')
m = high_m + x
M = m((m^3 - c).small_roots()[0])
return M n = 10934282759418716864083387149400358148885247110933867252983794425632302624483291838978054379912661191455027376539730843211768681711588034738804296785076819
c = 199928678441564572513071545433948014294972061145992950128884609861283198064457810780158231851803305318741555460032075238932950496972965422017125
high_m = 584734024210391580014049648429032467639773954048 M=phase2(high_m, n, c)
print(long_to_bytes(int(M)))

flag{this_is_a_flag}

已知p的高位,求m

n = 22251179507951667208988404735324990388496950479821651652239579051045817986824945842987389922759437945557559748313907295712994332924679954306619009079508267870910149223565520196385455171091011721532290110253401719887456896015127869765120008086727571060297059461651083340986173237394309195529977693665449059967337557768799655172974710341929078477027816362721220950313898766868468203962782247110726810571421671360963619837700834009507913757260784147014841481557088215597539779565493898663380798904766007590175316989637076522379230279938065198199833033309266088268398369881039750675835382713087914092008694800853680890199
c = 13791076590876280345965238373786427523823675722374540431144373789735114060078921115309660269509771288228144711168452947459244770278987545774287579571059845423259662466243727180866431665100157413245622442955953683599217851246153754699865188329020209657227990460455369896960050383820265224545863644175721361758413632638638545353172694886999221882770404353366722168355187142789778530832186215934690392286482192890311329246011772739859918291556448869621490688586398693159275264761107488552610343215662469995425523594866854716852872141401095283180173839653418794273521904566990987307557028155209305585359720312859989634334
(p>>128)<<128 = 150840505999598161819551431768821975459467574249752039047846845481249241887784911457438773307473629946085877682693884024926228559996574370474982369597013808808768450992113314638371133051992554697609546180277873202687064844984114775286878743211353292718680724328420518679703560272767696234210910831061812379648

exp:

from Crypto.Util.number import *

def phase3(high_p, n, c):
R.<x> = PolynomialRing(Zmod(n), implementation='NTL')
p = high_p + x
x0 = p.small_roots(X = 2^128, beta = 0.1,epsilon=0.02)[0] P = int(p(x0))
Q = n // P
assert n == P*Q d = inverse_mod(65537, (P-1)*(Q-1))
#print(power_mod(c, d, n))
return power_mod(c,d,n) n = 22251179507951667208988404735324990388496950479821651652239579051045817986824945842987389922759437945557559748313907295712994332924679954306619009079508267870910149223565520196385455171091011721532290110253401719887456896015127869765120008086727571060297059461651083340986173237394309195529977693665449059967337557768799655172974710341929078477027816362721220950313898766868468203962782247110726810571421671360963619837700834009507913757260784147014841481557088215597539779565493898663380798904766007590175316989637076522379230279938065198199833033309266088268398369881039750675835382713087914092008694800853680890199
c = 13791076590876280345965238373786427523823675722374540431144373789735114060078921115309660269509771288228144711168452947459244770278987545774287579571059845423259662466243727180866431665100157413245622442955953683599217851246153754699865188329020209657227990460455369896960050383820265224545863644175721361758413632638638545353172694886999221882770404353366722168355187142789778530832186215934690392286482192890311329246011772739859918291556448869621490688586398693159275264761107488552610343215662469995425523594866854716852872141401095283180173839653418794273521904566990987307557028155209305585359720312859989634334
high_p = 150840505999598161819551431768821975459467574249752039047846845481249241887784911457438773307473629946085877682693884024926228559996574370474982369597013808808768450992113314638371133051992554697609546180277873202687064844984114775286878743211353292718680724328420518679703560272767696234210910831061812379648 M=phase3(high_p, n, c)
print(M)
print(long_to_bytes(M))

已知p的若干中间位

from Crypto.Util.number import *
flag = b'?' e = 65537
p, q = getPrime(1024), getPrime(1024)
N = p * q
gift = p&(2**923-2**101)
m = bytes_to_long(flag)
c = pow(m, e, N) print("N = ",N)
print("gift = ",gift)
print("c = ",c) """
N = 12055968471523053394851394038007091122809367392467691213651520944038861796011063965460456285088011754895260428814358599592032865236006733879843493164411907032292051539754520574395252298997379020268868972160297893871261713263196092380416876697472160104980015554834798949155917292189278888914003846758687215559958506116359394743135211950575060201887025032694825084104792059271584351889134811543088404952977137809673880602946974798597506721906751835019855063462460686036567578835477249909061675845157443679947730585880392110482301750827802213877643649659069945187353987713717145709188790427572582689339643628659515017749
p0 = 70561167908564543355630347620333350122607189772353278860674786406663564556557177660954135010748189302104288155939269204559421198595262277064601483770331017282701354382190472661583444774920297367889959312517009682740631673940840597651219956142053575328811350770919852725338374144
c = 2475592349689790551418951263467994503430959303317734266333382586608208775837696436139830443942890900333873206031844146782184712381952753718848109663188245101226538043101790881285270927795075893680615586053680077455901334861085349972222680322067952811365366282026756737185263105621695146050695385626656638309577087933457566501579308954739543321367741463532413790712419879733217017821099916866490928476372772542254929459218259301608413811969763001504245717637231198848196348656878611788843380115493744125520080930068318479606464623896240289381601711908759450672519228864487153103141218567551083147171385920693325876018
"""

exp:

N =  12055968471523053394851394038007091122809367392467691213651520944038861796011063965460456285088011754895260428814358599592032865236006733879843493164411907032292051539754520574395252298997379020268868972160297893871261713263196092380416876697472160104980015554834798949155917292189278888914003846758687215559958506116359394743135211950575060201887025032694825084104792059271584351889134811543088404952977137809673880602946974798597506721906751835019855063462460686036567578835477249909061675845157443679947730585880392110482301750827802213877643649659069945187353987713717145709188790427572582689339643628659515017749
p0 = 70561167908564543355630347620333350122607189772353278860674786406663564556557177660954135010748189302104288155939269204559421198595262277064601483770331017282701354382190472661583444774920297367889959312517009682740631673940840597651219956142053575328811350770919852725338374144
c = 2475592349689790551418951263467994503430959303317734266333382586608208775837696436139830443942890900333873206031844146782184712381952753718848109663188245101226538043101790881285270927795075893680615586053680077455901334861085349972222680322067952811365366282026756737185263105621695146050695385626656638309577087933457566501579308954739543321367741463532413790712419879733217017821099916866490928476372772542254929459218259301608413811969763001504245717637231198848196348656878611788843380115493744125520080930068318479606464623896240289381601711908759450672519228864487153103141218567551083147171385920693325876018 def bivariate(pol, XX, YY, kk=4):
N = pol.parent().characteristic() f = pol.change_ring(ZZ)
PR, (x, y) = f.parent().objgens() idx = [(k - i, i) for k in range(kk + 1) for i in range(k + 1)]
monomials = list(map(lambda t: PR(x ** t[0] * y ** t[1]), idx))
# collect the shift-polynomials
g = []
for h, i in idx:
if h == 0:
g.append(y ** h * x ** i * N)
else:
g.append(y ** (h - 1) * x ** i * f) # construct lattice basis
M = Matrix(ZZ, len(g))
for row in range(M.nrows()):
for col in range(M.ncols()):
h, i = idx[col]
M[row, col] = g[row][h, i] * XX ** h * YY ** i # LLL
B = M.LLL() PX = PolynomialRing(ZZ, 'xs')
xs = PX.gen()
PY = PolynomialRing(ZZ, 'ys')
ys = PY.gen() # Transform LLL-reduced vectors to polynomials
H = [(i, PR(0)) for i in range(B.nrows())]
H = dict(H)
for i in range(B.nrows()):
for j in range(B.ncols()):
H[i] += PR((monomials[j] * B[i, j]) / monomials[j](XX, YY)) # Find the root
poly1 = H[0].resultant(H[1], y).subs(x=xs)
poly2 = H[0].resultant(H[2], y).subs(x=xs)
poly = gcd(poly1, poly2)
x_root = poly.roots()[0][0] poly1 = H[0].resultant(H[1], x).subs(y=ys)
poly2 = H[0].resultant(H[2], x).subs(y=ys)
poly = gcd(poly1, poly2)
y_root = poly.roots()[0][0] return x_root, y_root PR = PolynomialRing(Zmod(N), names='x,y')
x, y = PR.gens()
pol = 2 ** 923 * x + y + p0 x, y = bivariate(pol, 2 ** 101, 2 ** 101)
p = 2 ** 923 * x + y + p0
q = N // p
print(p)
print(q)
phi=(p-1)*(q-1)
e=65537
d=inverse(e,phi)
m=pow(c,d,N)
print(long_to_bytes(int(m)))

CTF中RSA相关题型总结(持续更新)的更多相关文章

  1. BAT 前端开发面经 —— 吐血总结 前端相关片段整理——持续更新 前端基础精简总结 Web Storage You don't know js

    BAT 前端开发面经 —— 吐血总结   目录 1. Tencent 2. 阿里 3. 百度 更好阅读,请移步这里 聊之前 最近暑期实习招聘已经开始,个人目前参加了阿里的内推及腾讯和百度的实习生招聘, ...

  2. PHP 日常开发过程中的bug集合(持续更新中。。。)

    PHP 日常开发过程中的bug集合(持续更新中...) 在日常php开发过程中,会遇到一些意想不到的bug,所以想着把这些bug记录下来,以免再犯! 1.字符串 '0.00'.'0.0'.'0'  是 ...

  3. Android中常用开发工具类—持续更新...

    一.自定义ActionBar public class ActionBarTool { public static void setActionBarLayout(Activity act,Conte ...

  4. Android开发中常用的库总结(持续更新)

    这篇文章用来收集Android开发中常用的库,都是实际使用过的.持续更新... 1.消息提示的小红点 微信,微博消息提示的小红点. 开源库地址:https://github.com/stefanjau ...

  5. JPA相关知识点滴--持续更新中.....

    Java 持久化(JPA)  •Java EE 5 在EJB 3.0 中包含JPA 1.0 •参考实现:TopLink Essentials •Java EE 6 包含JPA 2.0 •参考实现:Ec ...

  6. CSS相关知识(持续更新中)

    1. 弹性布局 一种当页面需要适应不同的屏幕大小以及设备类型时确保元素拥有恰当的行为的布局方式.引入弹性布局模型的目的是提供一种更加有效的方式来对一个容器中的子元素进行排列.对齐和分配空白空间. 2. ...

  7. Android常见崩溃或闪退的问题描述及原因总结、及与性能相关的模块——持续更新

    1.nullpointer——就是使用一个对象的时候还没有对其进行初始化导致该问题 一般在何种情况下容易出现呢? (1)父窗口+子窗口同时出现的,父窗口因为某种原因消掉了,子窗口还在,操作子窗口找不到 ...

  8. 使用jenkins中遇到的问题汇总/持续更新

    jenkins产生大量日志文件 question: [DNSQuestion@1446063419 type: TYPE_IGNORE index 0, class: CLASS_UNKNOWN in ...

  9. 关于npm警告fsevents和vue-cli项目中的一些问题,持续更新

    1.install一个npm包的时候,总是会报这个警告: 网上查资料知道,这个fsevents是mac下用的,windows忽略即可: 2.关于在main.js中引入less文件的问题, 就会报这个错 ...

  10. kubernetes 中遇见的一些坑(持续更新)

    一.官网镜像无法下载 解决方法:需要翻墙 配置docker翻墙机: cat /usr/lib/systemd/system/docker.service   [Service] Environment ...

随机推荐

  1. Azure 入门系列 (第一篇 Virtual Machine 和 SQL Server)

    前言 终于有机会自己搞 Azure 了. 以前都是找代理做,近期代理 support 越来越弱了. 看来是 right time 自己搞了. 以前写过一些关于 Azure 的笔记: Azure key ...

  2. 2024 年 04 月编程语言排行榜,PHP 排名创新低?

    ​ 编程语言的流行度总是变化莫测,每个月的排行榜都揭示着新的趋势.2024年4月的编程语言排行榜揭示了一个引人关注的现象:PHP的排名再次下滑,创下了历史新低.这种变化对于PHP开发者和整个技术社区来 ...

  3. 【Azure Cloud Service】使用Key Vault Secret添加.CER证书到Cloud Service Extended Support中

    问题描述 因为Key Vault的证书上传功能中,只支持pfx格式的证书,而中间证书,根证书不能转换为pfx格式,只能是公钥证书格式 cet 或者 crt,能通过文本工具直接查看base64编码内容. ...

  4. KubeSphere 社区双周报 | OpenFunction 发布 v1.1.1 | 2023.6.9-6.22

    KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书.新增的讲师证书以及两周内提交过 commit 的贡献者,并对近期重要的 PR 进行解析,同时还包含了线上/线下活动和布道推广等一系列 ...

  5. Unity 华为快游戏JS桥接 实现写日志等功能

    之前接入微信小游戏本身代码js桥接比较完善,抖音小游戏有缺少但也没缺的这么多,华为这边的API,大残啊!官方转换插件Github仓库上一次提交在3月份.(截至现在)API给的很简略,接入js代码那里说 ...

  6. 使用Radzen Blazor组件库开发的基于ABP框架炫酷UI主题

    一.项目简介 使用过ABP框架的童鞋应该知道它也自带了一款免费的Blazor UI主题,它的页面是长这样的: 个人感觉不太美观,于是网上搜了很多Blazor开源组件库,发现有一款样式非常不错的组件库, ...

  7. Java高并发synchronized讲解生产者消费者

    问题描述 题目:两个线程操作一个变量,实现两个线程对同一个资源一个进行加1操作,另外一个进行减1操作,且需要交替实现,变量的初始值为0.即两个线程对同一个资源进行加一减一交替操作.话不多说,开干首先我 ...

  8. v-bind属性,v-model属性

    一.v-bind v-bind动态绑定指令 默认情况下标签自带属性的值是固定的,可以使用v-bind:'需要绑定的值'='表达式' 所谓动态绑定动态的含义是我们不必修改页面template模板的代码, ...

  9. snap和apt的区别简单了解[]

    Linux中没有tree命令的时候提示安装的时候出现了两个命令,简单看了看两者有何区别(一般用apt就可以了):   sudo snap install tree 和 sudo apt install ...

  10. @RequestBody注解转对象中驼峰格式的参数无法接收到数据的问题解决方法

    1.问题:驼峰格式的参数传递到后端,@RequestBody注解标注的实体对象参数没有接收到对应的数据 前端传参:执行结果:请求参数实体: import lombok.Data; /** * 请求参数 ...