【BZOJ4361】isn

Description

给出一个长度为n的序列A(A1,A2...AN)。如果序列A不是非降的,你必须从中删去一个数,
这一操作,直到A非降为止。求有多少种不同的操作方案,答案模10^9+7。

Input

第一行一个整数n。
接下来一行n个整数,描述A。

Output

一行一个整数,描述答案。

Sample Input

4
1 7 5 3

Sample Output

18

HINT

1<=N<=2000

题解:想到动归+树状数组+容斥,但是容斥系数想复杂了~

我们希望先求出所有长度为i的非降序列个数,可以用DP解决。设f[i][j]表示最大值为i,长度为j的非降序列个数,用树状数组优化转移即可。

然后用g[i]表示$\sum f[..][j]$。因为其它数删除的顺序可以随便选,所以g[i]*=(n-i)!。但是有可能删到一半就已经得到了一个非降序列,怎么除去不合法状态呢?容斥呗!

一开始想了半天容斥系数,但其实g[i]-=g[i+1]*(i+1)即可。因为删到一般就得到非降序列情况刚好是g[i+1]。

时间复杂度$O(n^2\log n)$

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int P=1000000007;
int n,m;
ll ans;
int val[2010],v[2010],p[2010];
int s[2010][2010];
ll f[2010],c[2010][2010],jc[2010],jcc[2010],ine[2010];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
bool cmp(const int &a,const int &b)
{
return val[a]<val[b];
}
inline void updata(int x,int y,int z)
{
if(!z) return ;
f[y]+=z;
for(int i=x;i<=m;i+=i&-i)
{
s[y][i]+=z;
if(s[y][i]>=P) s[y][i]-=P;
}
}
inline int query(int x,int y)
{
int i,ret=0;
for(i=x;i;i-=i&-i)
{
ret+=s[y][i];
if(ret>=P) ret-=P;
}
return ret;
}
int main()
{
n=rd();
int i,j;
jc[0]=jc[1]=jcc[0]=jcc[1]=ine[0]=ine[1]=1;
for(i=2;i<=n;i++) jc[i]=jc[i-1]*i%P,ine[i]=P-(P/i)*ine[P%i]%P,jcc[i]=jcc[i-1]*ine[i]%P;
for(i=0;i<=n;i++)
{
c[i][0]=1;
for(j=1;j<=i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%P;
}
for(i=1;i<=n;i++) val[i]=rd(),p[i]=i;
sort(p+1,p+n+1,cmp);
for(i=1;i<=n;i++)
{
if(i==1||val[p[i]]>val[p[i-1]]) m++;
v[p[i]]=m;
}
for(i=1;i<=n;i++)
{
for(j=i;j>=2;j--) updata(v[i],j,query(v[i],j-1));
updata(v[i],1,1);
}
for(i=1;i<=n;i++) f[i]=f[i]%P*jc[n-i]%P;
for(i=1;i<=n;i++) f[i]=(f[i]-f[i+1]*(i+1)%P+P)%P,ans=(ans+f[i])%P;
printf("%lld",ans);
return 0;
}//4 1 2 3 4

【BZOJ4361】isn 动态规划+树状数组+容斥的更多相关文章

  1. bzoj4361 isn (dp+树状数组+容斥)

    我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn) ...

  2. BZOJ.4361.isn(DP 树状数组 容斥)

    题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...

  3. 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)

    4361: isn Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 218  Solved: 126 Description 给出一个长度为n的序列A( ...

  4. 【bzoj1109】[POI2007]堆积木Klo 动态规划+树状数组

    题目描述 Mary在她的生日礼物中有一些积木.那些积木都是相同大小的立方体.每个积木上面都有一个数.Mary用他的所有积木垒了一个高塔.妈妈告诉Mary游戏的目的是建一个塔,使得最多的积木在正确的位置 ...

  5. bzoj4361 isn(树状数组优化dp+容斥)

    4361: isn Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 938  Solved: 485[Submit][Status][Discuss] ...

  6. BZOJ4361 isn(动态规划+树状数组+容斥原理)

    首先dp出长度为i的不下降子序列个数,显然这可以树状数组做到O(n2logn). 考虑最后剩下的序列是什么,如果不管是否合法只是将序列删至只剩i个数,那么方案数显然是f[i]*(n-i)!.如果不合法 ...

  7. BZOJ4361 isn 【树状数组优化DP】*

    BZOJ4361 isn Description 给出一个长度为n的序列A(A1,A2-AN).如果序列A不是非降的,你必须从中删去一个数,这一操作,直到A非降为止.求有多少种不同的操作方案,答案模1 ...

  8. 2015 CCPC-C-The Battle of Chibi (UESTC 1217)(动态规划+树状数组)

    赛后当天学长就说了树状数组,结果在一个星期后赖床时才有了一点点思路…… 因为无法提交,不确定是否正确..嗯..有错希望指出,谢谢... 嗯..已经A了..提交地址http://acm.uestc.ed ...

  9. BZOJ4990 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4990 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...

随机推荐

  1. 2 python大数据挖掘系列之淘宝商城数据预处理实战

    preface 在上一章节我们聊了python大数据分析的基本模块,下面就说说2个项目吧,第一个是进行淘宝商品数据的挖掘,第二个是进行文本相似度匹配.好了,废话不多说,赶紧上车. 淘宝商品数据挖掘 数 ...

  2. Centos7.3.1611安装mysql5.7.18 rpm教程 并设置datadir

    一.卸载MariaDB CentOS7默认安装MariaDB而不是MySQL,而且yum服务器上也移除了mysql相关的软件包.因为MariaDB和MySQL可能会冲突,故先卸载MariaDB. 1. ...

  3. windows7 安装IIS没有default web site 解决方法

    因当时是第一次在Windows 7上使用IIS,不小心把default web site删除了,后来无论怎么重装IIS都不行,最后想到能不能直接把别人安装好后的IIS相关文件夹拷过来使用,用宿舍一哥们 ...

  4. goquery 文档

    https://www.itlipeng.cn/2017/04/25/goquery-%E6%96%87%E6%A1%A3/ http://blog.studygolang.com/2015/04/g ...

  5. 添加额外的源, 使得yum可以安装更多的软件

    RHEL 官方扩展源 yum localinstall http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch. ...

  6. 关于error:Cannot assign to 'self' outside of a method in the init family

    有时候我们重写父类的init方法时不注意将init后面的第一个字母写成了小写,在这个方法里面又调用父类的初始化方法(self = [super init];)时会报错,错误信息如下:error:Can ...

  7. openURL调用其他程序(转)

    转自:http://blog.csdn.net/iefreer/article/details/8812708 一个应用程序,可以调用其它的应用程序的. 和其它应用程序进行通讯如果一个应用程序支持一些 ...

  8. 【能力提升】SQL Server常见问题介绍及高速解决建议

    前言 本文旨在帮助SQL Server数据库的使用人员了解常见的问题.及高速解决这些问题.这些问题是数据库的常规管理问题,对于非常多对数据库没有深入了解的朋友提供一个大概的常见问题框架. 以下一些问题 ...

  9. 浅谈Java的学习

    Java就是用来做项目的!Java的主要应用领域就是企业级的项目开发!要想从事企业级的项目开发,你必须掌握如下要点: 1.掌握项目开发的基本步骤2.具备极强的面向对象的分析与设计技巧3.掌握用例驱动. ...

  10. iOS开发-UIImageView的contentMode属性

    UIImageView 的contentMode这个属性是用来设置图片的显示方式,如居中.居右,是否缩放等,有以下几个常量可供设定:UIViewContentModeScaleToFillUIView ...