临近\(noip,AK\)不太现实,暴力才是王道,大佬无视

这里只介绍\(65\)分做法



\(m==1\) 的情况

很明显 就一条路径,当然要贪心选着一条路径路上的最大的边喽

傻逼分\(get 20\)分



\(n,m<=100\)

想怎么暴力怎么暴力,反正不会TLE

**枚举割哪一条边 **

枚举每条路径dfs()一边 寻找最大值

最后取min 就好了

复杂度\(O(n^3)\)

又get 10分

很明显的二分,我就是不会(⊙o⊙)



一条链子的时候并且n<=3000

求路径的和的时候可以用前缀和维护一下

达到O(1)的查询

使得②的复杂度降低了一个\(O(n)\)

最终复杂的\(O(n^2)\)

get 15分 啦



一条链子的时候并且n>=3000

二分他的最大长度

当然得利用③的O(1)查询啦

考虑check函数

如果第i次运货路线大于x(也就是二分的mid)

那么要割掉的点一定在\(l_{i}\)和\(r_{i}\)之间

维护一下左边界和右边界就好了(如果不成立的话直接return 0)

最后在左边界和右边界查询最大就好啦

最终复杂度O(\(nlogn\))

get 20分

最终得分 \(65\)

打死我也不会lca

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=100007;
int n,m;
int S[maxn],T[maxn],num[maxn];
int noip[maxn],cz[maxn];
struct edge{
int v,nxt,q;
}e[maxn<<1];
int head[maxn<<1],tot;
int a[maxn],sum[maxn];
int tot_30,max_30,flag_30;
void add_edge(int u,int v,int q)
{
e[++tot].v=v;
e[tot].q=q;
e[tot].nxt=head[u];
head[u]=tot;
}
inline int read()
{
int x=0,f=1;char s=getchar();
while(s<'0'||s>'9') {if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9') {x=x*10+s-'0',s=getchar();}
return x*f;
}
void dfs_30(int u,int f,int end)
{
if(u==end) {
flag_30=1;
return;
}
for(int i=head[u];i;i=e[i].nxt)
{
int v=e[i].v;
if(v==f) continue; int tmp=max_30;
tot_30+=e[i].q;
max_30=max(max_30,e[i].q); dfs_30(v,u,end);
if(flag_30) return; tot_30-=e[i].q;
max_30=tmp;
}
}
int check(int x)
{
int l=1,r=n;
int zz=0;
for(int i=1;i<=m;++i)
{
if(num[i] > x)
{
zz=max(zz,num[i]);
if(l >= T[i]) return 0;
if(r <= S[i]) return 0;
l=max(l,S[i]);
r=min(r,T[i]);
}
}
int tmp=0;
for(int i=l+1;i<=r;++i)
tmp=max(tmp,a[i]);
zz-=tmp;
return zz > x ? 0 : 1;
}
int main()
{
n=read(),m=read();
int flag_lz=0;
for(int i=1;i<n;++i)
{
int a=read(),b=read(),c=read();
if(a==b+1||b==a+1) flag_lz++;
add_edge(a,b,c);
add_edge(b,a,c);
}
for(int i=1;i<=m;++i)
S[i]=read(),T[i]=read();
if(m==1)
{
dfs_30(S[1],0,T[1]);
printf("%d\n",tot_30-max_30);
return 0;
}
if(n<=1000)
{
int ans=0x3f3f3f3f;
for(int i=1;i<=2*n-2;i+=2) // 枚举航道
{
int tmp=e[i].q;
e[i].q=e[i+1].q=0;
int dsr=0;
for(int j=1;j<=m;++j) //遍历客户
{
flag_30=tot_30=0;
dfs_30(S[j],0,T[j]);
dsr=max(dsr,tot_30);
}
ans=min(ans,dsr);
e[i].q=e[i+1].q=tmp;
}
printf("%d\n",ans);
return 0;
}
if(flag_lz==n-1)
{
for(int i=1,j=2;i<=2*(n-1);i+=2,j++)
a[j]=e[i].q;
for(int i=2;i<=n;++i)
sum[i]=sum[i-1]+a[i];
for(int i=1;i<=m;++i)
{
if(S[i]>T[i]) swap(S[i],T[i]);
num[i]=sum[T[i]]-sum[S[i]];
}
int l=1,r=3e8;
int ans;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d\n",ans);
return 0;
}
return 0;
}

luogu P2680 运输计划 65分做法的更多相关文章

  1. Luogu P2680 运输计划(二分+树上差分)

    P2680 运输计划 题意 题目背景 公元\(2044\)年,人类进入了宇宙纪元. 题目描述 公元\(2044\)年,人类进入了宇宙纪元. \(L\)国有\(n\)个星球,还有\(n-1\)条双向航道 ...

  2. [luogu]P2680 运输计划[二分答案][树上差分]

    [luogu]P2680 [NOIP2015]运输计划 题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n ...

  3. luogu P2680 运输计划 (二分答案+树上差分)

    题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条航道建立在两个星球之间 ...

  4. luogu P2680 运输计划

    传送门 要最长链的长度最短,一秒想到二分,因为如果对于某个长度满足改掉一边的边权后能使得所有链长度不超过该长度,则所有比他长的长度也满足. 二分最终答案.我们要使得原来长度大于二分的\(mid\)的链 ...

  5. 洛谷 P2680 运输计划 解题报告

    P2680 运输计划 题目背景 公元2044年,人类进入了宇宙纪元. 题目描述 公元2044年,人类进入了宇宙纪元. \(L\)国有\(n\)个星球,还有\(n-1\)条双向航道,每条航道建立在两个星 ...

  6. 洛谷 P2680 运输计划-二分+树上差分(边权覆盖)

    P2680 运输计划 题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条 ...

  7. P2680 运输计划(二分+树上差分)

    P2680 运输计划 链接 分析: 二分+树上差分. 首先可以二分一个答案,那么所有比这个答案大的路径,都需要减去些东西才可以满足这个答案. 那么减去的这条边一定在所有的路径的交集上. 那么如果求快速 ...

  8. 洛谷——P2680 运输计划

    https://www.luogu.org/problem/show?pid=2680 题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每 ...

  9. P2680 运输计划

    http://www.luogu.org/problem/show?pid=2680#sub 题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航 ...

随机推荐

  1. Python安装常见问题(1):zipimport.ZipImportError: can't decompress data

    在CentOS以及其他的Linux系统中遇到安装包安装错误的原因,大多数都是因为缺少依赖包导致的,所以对于错误:zipimport.ZipImportError: can’t decompress d ...

  2. openstack 部署笔记--glance

    控制节点 创建用户及服务 $ . admin-openrc $ openstack user create --domain default --password-prompt glance $ op ...

  3. [LeetCode] All questions numbers conclusion 所有题目题号

    Note: 后面数字n表明刷的第n + 1遍, 如果题目有**, 表明有待总结 Conclusion questions: [LeetCode] questions conclustion_BFS, ...

  4. Pycharm上python3运行unittest无法生成测试报告

    原文地址https://www.cnblogs.com/yoyoketang/p/7523409.html 前言 经常有人在群里反馈,明明代码一样的啊,为什么别人的能出报告,我的出不了报告:为什么别人 ...

  5. Look for the Air Jordan 32 in full family sizing

    Following the release of the 'Rosso Corsa' colorway, Jordan Brand is now set to officially launch th ...

  6. Redis 十分钟快速入门

    本教程是一个快速入门教程,所以Redis的命令只是简单介绍了几个常用的,如果有其他需求请求官网查看API 使用. 1. Redis简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的ke ...

  7. chrome浏览器使用

    1.如何打开多个历史网页.这个需求是这样的,有时候开了多个网页查找资料,但是又还没有做完,然后又需要重启电脑.显然重启电脑后再开启浏览器,一般都是显示浏览器的主页了,上次开的那些网页全部在历史记录里面 ...

  8. Filter—过滤器

    过滤器的作用是什么? 1.拦截传入的请求和传出的响应,能拿到请求和响应中的数据 2.监视,修改,或处理正在客户端和服务器之间交换的数据流 3.利用过滤器的执行时机,实现Web程序的预处理,和后期的处 ...

  9. GetLastError函数

      错误代码各个位数的意义:GetLastError函数返回值!SetLastError可是设置这个错误代码. 位 31-30 29 28 27-16 15-0 内容 严重性 Micorsoft/ 客 ...

  10. mysql性能优化2

    sql语句优化 性能不理想的系统中除了一部分是因为应用程序的负载确实超过了服务器的实际处理能力外,更多的是因为系统存在大量的SQL语句需要优化. 为了获得稳定的执行性能,SQL语句越简单越好.对复杂的 ...