Faiss教程:基础
Faiss对一些基础算法提供了非常高效的实现:k-means、PCA、PQ编解码。
聚类
假设2维tensor x:
ncentroids = 1024
niter = 20
verbose = True
d = x.shape[1]
kmeans = faiss.Kmeans(d, ncentroids, niter, verbose)
kmeans.train(x)
中心点放在kmeans.centroids中,目标函数的值放在kmeans.obj中。返回查询数据最近的中心点:
D, I = kmeans.index.search(x, 1)
返回某个测试数据集中离各个中心点最近的15个点。
index = faiss.IndexFlatL2 (d)
index.add (x)
D, I = index.search (kmeans.centroids, 15)
通过调整索引可以放到GPU上运行。
PCA降维
从40维降低到10维度
# random training data
mt = np.random.rand(1000, 40).astype('float32')
mat = faiss.PCAMatrix (40, 10)
mat.train(mt)
assert mat.is_trained
tr = mat.apply_py(mt)
# print this to show that the magnitude of tr's columns is decreasing
print (tr ** 2).sum(0)
ProductQuantizer(PQ)
d = 32 # data dimension
cs = 4 # code size (bytes)
# train set
nt = 10000
xt = np.random.rand(nt, d).astype('float32')
# dataset to encode (could be same as train)
n = 20000
x = np.random.rand(n, d).astype('float32')
pq = faiss.ProductQuantizer(d, cs, 8)
pq.train(xt)
# encode
codes = pq.compute_codes(x)
# decode
x2 = pq.decode(codes)
# compute reconstruction error
avg_relative_error = ((x - x2)**2).sum() / (x ** 2).sum()
标量量化器(每一维度量化)
d = 32 # data dimension
# train set
nt = 10000
xt = np.random.rand(nt, d).astype('float32')
# dataset to encode (could be same as train)
n = 20000
x = np.random.rand(n, d).astype('float32')
# QT_8bit allocates 8 bits per dimension (QT_4bit also works)
sq = faiss.ScalarQuantizer(d, faiss.ScalarQuantizer.QT_8bit)
sq.train(xt)
# encode
codes = sq.compute_codes(x)
# decode
x2 = sq.decode(codes)
# compute reconstruction error
avg_relative_error = ((x - x2)**2).sum() / (x ** 2).sum()
选择索引的策略
推荐使用index_factory,通过参数创建索引。
- Flat
提供数据集的基准结果,不压缩向量,也不支持添加id;如果需要 add_with_ids,使用“IDMap,Flat”参数。
无需训练,支持GPU.
Faiss的索引都是放在RAM中的,所以也就要考虑到内存的占用。
HNSWx
足够的内存,小的数据集。每个向量的links数目x范围[4,64],通过efSearch参数折中速度和精度,每个向量的内存占用为d4+x2*4个字节。
不支持add_with_ids(如需要添加IDMap),无需训练,不支持从索引中移除向量,不支持GPUxxx,Flat
xxx表示提前为数据做了聚类,如IVFFlat,通过nprobe这种速度和精度,支持GPU(聚类方法也支持的情况下)。PCARx,...,SQ8
存储整改向量占用资源太多,可以PCA降到x维度;SQ每项用一个字节表示。这样每个向量只占用x个字节的存储空间。不支持GPU。OPQx_y,...,PQx
PQx中x是字节数,通常<=64,如果更大采用SQ更为高效。OPQ是对数据做了线性变换更利于数据压缩,y表示:x的倍数、y<=d且y<4*x(推荐)。x表示OPQ中的分割参数,y才是最终切分结果。支持GPU。
从数据集大小的角度(数据量、训练数据大小):
少于1百万,使用...,IVFx,...
数据集大小为N,x为[4sqrt(N),16sqrt(N)]。使用K-menas进行聚类,我们需要[30x,256x]个向量进行训练(当然越多越好)。支持GPU。1百万 < N < 1千万,使用...,IMI2x10,...
IMI在训练数据集中通过kmeans得到210个中心点。但它是对向量的前后两半分别进行的聚类,也就是得到的2102=220个中心描述。我们需要64*2^10个训练样本。不支持GPU。1千万 < N < 1个亿,使用...,IMI2x12,...
同上,只是增加了聚类数。1亿 < N < 10亿,使用...,IMI2x14,...
同上。
Faiss教程:基础的更多相关文章
- iOS10 UI教程基础窗口的内容与设置起始窗口
iOS10 UI教程基础窗口的内容与设置起始窗口 iOS10 UI教程基础窗口的内容与设置起始窗口,本章我们从iOS10开发中UI的基础知识开始讲解,其中包括了窗口.视图以及UI层次结构和Views的 ...
- SQLAlchemy 教程 —— 基础入门篇
SQLAlchemy 教程 -- 基础入门篇 一.课程简介 1.1 实验内容 本课程带领大家使用 SQLAlchemy 连接 MySQL 数据库,创建一个博客应用所需要的数据表,并介绍了使用 SQLA ...
- 2.高并发教程-基础篇-之nginx+mysql实现负载均衡和读写分离
技巧提示:mysql读写分离搭建好之后,配合nginx的负载均衡,可以高效的mysql的集群性能,同时免去麻烦的query分流.比如,sever1收到的请求就专门链接slave1从mysql读取数据, ...
- 3.高并发教程-基础篇-之分布式全文搜索引擎elasticsearch的搭建
高并发教程-基础篇-之分布式全文搜索引擎elasticsearch的搭建 如果大家看了我的上一篇<2.高并发教程-基础篇-之nginx+mysql实现负载均衡和读写分离>文章,如果能很好的 ...
- GitKraken使用教程-基础部分(4)
6. 打开现有的Git仓库 点击左上角 File ==> open repo ,出现如图 6‑1的界面: 图 6‑1 打开本地仓库 点击图中的 按钮就会出现一个对话框,如图 6‑2,以 G:\ ...
- GitKraken使用教程-基础部分(3)
5. 克隆服务器上的项目 首先,返回主界面,点击File => Clone Repo,选择 Clone with URL,如下图: 图 5‑1 SSH方式克隆仓库界面 1) SSH 方式连接仓库 ...
- GitKraken使用教程-基础部分(2)
3. 修改用户名 为了方便项目中代码的管理,需要重新编辑用户名. 点击右上角的图像即可看到如下图 3‑1所示的下拉菜单,鼠标悬于Profile上,会出现一个Edit按钮. 图 3‑1 编辑个人信息 点 ...
- GitKraken使用教程-基础部分(1)
1. 首次打开程序 第一次打开GitKraken程序时, GitKraken会提示需要登陆,可以用github.com的账号登陆,或者用邮箱创建账号登陆(如图 1‑1). 图 1‑1登陆帐户界面 登陆 ...
- Xamarin XAML语言教程基础语法篇大学霸
Xamarin XAML语言教程基础语法篇大学霸 前 言 Xamarin是一个跨平台开发框架.它可以用来开发iOS.Android.Windows Phone和Mac的应用程序.使用Xamarin框 ...
- 深度学习入门者的Python快速教程 - 基础篇
5.1 Python简介 本章将介绍Python的最基本语法,以及一些和深度学习还有计算机视觉最相关的基本使用. 5.1.1 Python简史 Python是一门解释型的高级编程语言,特点是简单明 ...
随机推荐
- 使用itext直接替换PDF中的文本
直接说问题,itext没有直接提供替换PDF中文本的接口(查看资料得到的结论是PDF不支持这种操作),不过存在解决思路:在需要替换的文本上覆盖新的文本.按照这个思路我们需要解决以下几个问题: itex ...
- 使用Cordova搭建Andoid和iOS开发环境
最近在了解cordova ,下面的分享出来 大家可以看看, 我 有空也按照这个写写demo 1.下载node.js,进行安装 https://nodejs.org/en/ 2.安装cordova ...
- 基于matplotlib的数据可视化 - 柱状图bar
柱状图bar 柱状图常用表现形式为: plt.bar(水平坐标数组,高度数组,宽度比例,ec=勾边色,c=填充色,label=图例标签) 注:当高度值为负数时,柱形向下 1 语法 bar(*args, ...
- javascript 中 split 函数分割字符串成数组
分割字符串成数组的方法有很多,不过使用最多的还是split函数 <script language="javascript"> str="2,2,3,5,6,6 ...
- pingback协议与traceback协议的区别
wordpress 的 pingback协议与traceback协议区别
- java 和 C++ Socket通信(java作为服务端server,C++作为客户端client,解决中文乱码问题GBK和UTF8)
原文链接: http://www.cnblogs.com/kenkofox/archive/2010/04/25/1719649.html 代码: http://files.cnblogs.com/k ...
- 【转载】mysql配置模板(my-*.cnf)参数详细说明
原文:https://yq.aliyun.com/ziliao/142086 mysql 性能优化分享,好文章: http://www.jb51.net/article/28363.htm mysql ...
- Knockout: 实践CSS绑定和jQuery的blur失去焦点事件, 给未通过校验的输入框添加红色边框突出显示.
目的: 实践一下Knockout提供的CSS绑定功能和JQuery的blur失去焦点事件, 这次不使用Knockout的afterkeydown事件了. 步骤: 先在htm中添加.error的css样 ...
- 微信小程序之顶部固定和底部固定
顶部固定 <view style="position:fixed;top:0;"> ...... </view> 底部固定 <view style=& ...
- android 中毛玻璃效果的实现
最近在做一款叫叽叽的App(男银懂的),其中有一个功能需要对图片处理实现毛玻璃的特效 进过一番预研,找到了3中实现方案,其中各有优缺点: 1.如果系统的api在16以上,可以使用系统提供的方法直接处理 ...