BZOJ 4032: [HEOI2015]最短不公共子串
4032: [HEOI2015]最短不公共子串
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 446 Solved: 224
[Submit][Status][Discuss]
Description
在虐各种最长公共子串、子序列的题虐的不耐烦了之后,你决定反其道而行之。
Input
有两行,每行一个小写字母组成的字符串,分别代表A和B。
Output
输出4行,每行一个整数,表示以上4个问题的答案的长度。如果没有符合要求的答案,输出-1.
Sample Input
abcabc
Sample Output
4
2
4
HINT
对于100%的数据,A和B的长度都不超过2000
Source
本来以为是HEOI2015的大水题,然后被小甜甜安利了一发序列自动机……
我等蒟蒻并不会此等算法,所以只好暴力喽!
拿到之后看到是四个答案,就分别考虑。
问题一 A的一个最短的子串,不是B的子串
这个比较简单哈,刺姐姐和任哥哥不约而同地给出了HASH做法——预先对B串的每个子串处理出HASH值,扔进哈希表里,然后暴力枚举A串的每个子串,查询是否在B中出现过,如果没有出现过,就可以用来更新答案。
然后蒟蒻的我表示并不会HASH此等算法,只好KMP暴力喽。每次枚举A串中的一个位置,作为其子串的左端点,记为$L$。此时我们希望查询所有以$L$作为左端点的A的子串,最短的一个不是B的子串的东东。这个就对A串的$[L,Len]$求next数组,拿B串跑一遍KMP就行了。时间复杂度$O(N^2)$。
问题二 A的一个最短的子串,不是B的子序列
这个非常简单哈,众神犇(除了我的所有人)一致给出了暴力做法。枚举A的子串的左端点,然后暴力检查至少以那个点作为右端点,该子串才不是B的子序列。时间复杂度$O(N^2)$。
问题三 A的一个最短的子序列,不是B的子串
这个也很简单哈,众神犇表示不直接序列自动机直接上就可以,但是蒟蒻的我依旧不会,只好写暴力了哈。
先取出B的所有子串,塞到Trie树里面去,总的节点数是$O(N^2)$,算了下内存有点吃紧,就用map<int,int>了。
然后在每个节点上记录一个标记mark,代表A串中最少选出几个字符,才能匹配到Trie上的这个节点来。这个直接DFS就可以得到了。
然后在在每个Trie树节点上枚举一个字符,如果该节点没有这个字符的出边,那么A串就有机会找出一个合法的解了。此时我们只需要知道A串在mark位置之后是否出现过字符c即可,这个很简单喽。
问题四 A的一个最短的子序列,不是B的子序列
这个最最简单哈,只要用$f_{i,j}$表示使用A的前$i$个字符,使得B不得不使用前$j$个字符和其匹配,所能使用的最少字符数。这个$O(N^2)$动态规划,太简单就不说了。
然后顺利用四种暴力水过HEOI2015的最水一题。
#include <map>
#include <cstdio>
#include <cstring> #define chr char
#define rst register
#define rnt register int template <class T>
inline T min(const T &a, const T &b)
{
return a < b ? a : b;
} template <class T>
inline T max(const T &a, const T &b)
{
return a > b ? a : b;
} #define mxn 2005
#define mxm 4000005 int n, m; chr a[mxn];
chr b[mxn]; namespace case1
{
int tot;
int pos;
int vis[mxn];
int fil[mxn];
int nxt[mxn][]; inline int solve(int s)
{
tot = ;
pos = ; memset(vis, , sizeof vis);
memset(nxt, , sizeof nxt);
memset(fil, , sizeof fil); for (rnt i = s; i < n; ++i)
pos = nxt[pos][a[i] - 'a'] = ++tot; fil[] = ; for (rnt i = ; i < ; ++i)
if (nxt[][i])
fil[nxt[][i]] = ;
else
nxt[][i] = ; for (rnt i = ; i <= tot; ++i)
for (rnt j = ; j < ; ++j)
if (nxt[i][j])
fil[nxt[i][j]] = nxt[fil[i]][j];
else
nxt[i][j] = nxt[fil[i]][j]; pos = ; for (rnt i = ; i < m; ++i)
vis[pos = nxt[pos][b[i] - 'a']] = ; for (rnt i = ; i <= tot; ++i)
if (!vis[i])return i - ; return 1E9;
} inline void main(void)
{
int ans = 1E9; for (rnt i = ; i < n; ++i)
ans = min(ans, solve(i)); if (ans != 1E9)
printf("%d\n", ans);
else
printf("%d\n", -);
}
} namespace case2
{
inline int solve(int s)
{
for (rnt i = s, j = ; i < n; ++i, ++j)
{
while (j < m && b[j] != a[i])
++j; if (j >= m)
return i - s + ;
} return 1E9;
} inline void main(void)
{
int ans = 1E9; for (rnt i = ; i < n; ++i)
ans = min(ans, solve(i)); if (ans != 1E9)
printf("%d\n", ans);
else
printf("%d\n", -);
}
} namespace case3
{
int nxt[mxn][]; inline void prework(void)
{
for (rnt i = ; i <= n; ++i)
for (rnt j = ; j < ; ++j)
nxt[i][j] = n; for (rnt i = ; i < n; ++i)
nxt[i][a[i] - 'a'] = i; for (rnt i = n - ; i >= ; --i)
for (rnt j = ; j < ; ++j)
nxt[i][j] = min(nxt[i][j], nxt[i + ][j]);
} typedef std::map<int, int> map;
typedef std::map<int, int>::iterator itr; int tot = ;
int mrk[mxm];
map son[mxm]; inline void build(void)
{
for (rnt i = ; i < m; ++i)
{
rnt t = ; for (rnt j = i; j < m; ++j)
{
rnt c = b[j] - 'a'; if (son[t][c] == )
son[t][c] = ++tot; t = son[t][c];
}
}
} int ans = 1E9; inline void getmark(int t = , int d = )
{
if (d >= ans)return; int p = mrk[t]; for (rnt i = ; i < ; ++i)
if (nxt[p][i] < n) {
if (son[t][i])
mrk[son[t][i]] = nxt[p][i] + ,
getmark(son[t][i], d + );
else
ans = min(ans, d);
}
} inline void main(void)
{
build(); prework(); getmark(); if (ans != 1E9)
printf("%d\n", ans);
else
printf("%d\n", -);
}
} namespace case4
{
int nxt[mxn][]; int len[mxn][mxn]; inline void main(void)
{
for (rnt i = ; i <= m; ++i)
for (rnt j = ; j < ; ++j)
nxt[i][j] = m; for (rnt i = ; i < m; ++i)
nxt[i][b[i] - 'a'] = i; for (rnt i = m - ; i >= ; --i)
for (rnt j = ; j < ; ++j)
nxt[i][j] = min(nxt[i][j], nxt[i + ][j]); memset(len, 0x3f, sizeof len); len[][] = ; rnt t; for (rnt i = ; i < n; ++i)
for (rnt j = ; j <= m; ++j)
if (len[i][j] < 0x3f3f3f3f) {
t = nxt[j][a[i] - 'a'] + ;
len[i + ][j] = min(len[i + ][j], len[i][j]);
len[i + ][t] = min(len[i + ][t], len[i][j] + );
} int ans = 1E9; for (rnt i = ; i <= n; ++i)
ans = min(ans, len[i][m + ]); if (ans != 1E9)
printf("%d\n", ans);
else
printf("%d\n", -);
}
} signed main(void)
{
#ifndef ONLINE_JUDGE
freopen("in", "r", stdin);
freopen("out", "w", stdout);
#endif scanf("%s", a); n = strlen(a);
scanf("%s", b); m = strlen(b); case1::main();
case2::main();
case3::main();
case4::main();
}
@Author: YouSiki
BZOJ 4032: [HEOI2015]最短不公共子串的更多相关文章
- BZOJ 4032: [HEOI2015]最短不公共子串 后缀自动机 暴力
4032: [HEOI2015]最短不公共子串 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4032 Description 在虐各种最 ...
- bzoj 4032 [HEOI2015]最短不公共子串——后缀自动机
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4032 不是 b 的子串的话就对 b 建后缀自动机,在 a 上枚举从每个位置开始的子串或者找子 ...
- BZOJ.4032.[HEOI2015]最短不公共子串(DP 后缀自动机)
题目链接 1.求A的最短子串,它不是B的子串. 子串是连续的,对B建SAM,枚举起点,在SAM上找到第一个无法匹配点即可.O(n)用SAM能做吗..开始想错了. 2.求A的最短子串,它不是B的子序列. ...
- bzoj 4032: [HEOI2015]最短不公共子串【dp+SAM】
第一.二问: 就是最小的最长公共长度+1,设f[i][j]为a匹配到i,b匹配到j,第一问的转移是f[i][j]=(a[i]==b[j]?f[i-1][j-1]+1:0),第二问的转移是f[i][j] ...
- BZOJ 4032: [HEOI2015]最短不公共子串 (dp*3 + SAM)
转博客大法好 第4个子任务中,为什么只转移最近的一个位置,自己YY吧(多YY有益身体健康). #include <bits/stdc++.h> using namespace std; t ...
- BZOJ 4032: [HEOI2015]最短不公共子串(后缀自动机+记忆化搜索)
传送门 解题思路 首先需要预处理两个串\(nxt(i)(j)\)表示i位置之后最近的\(j\). 第一问直接对\(b\)建后缀自动机,枚举\(a\)的起点暴力匹配. 第二问枚举\(a\)的起点,\(b ...
- 【BZOJ】4032: [HEOI2015]最短不公共子串(LibreOJ #2123)
[题意]给两个小写字母串A,B,请你计算: (1) A的一个最短的子串,它不是B的子串 (2) A的一个最短的子串,它不是B的子序列 (3) A的一个最短的子序列,它不是B的子串 (4) A的一个最短 ...
- bzoj4032: [HEOI2015]最短不公共子串(SAM+DP)
4032: [HEOI2015]最短不公共子串 题目:传送门 题解: 陈年老题良心%你赛膜爆嘎爷 当初做题...一眼SAM...结果只会两种直接DP的情况... 情况1: 直接设f[i][j] 表示的 ...
- 【BZOJ4032】[HEOI2015]最短不公共子串(后缀自动机,序列自动机)
[BZOJ4032][HEOI2015]最短不公共子串(后缀自动机,序列自动机) 题面 BZOJ 洛谷 题解 数据范围很小,直接暴力构建后缀自动机和序列自动机,然后直接在两个自动机上进行\(bfs\) ...
随机推荐
- Kafka:Configured broker.id 2 doesn't match stored broker.id 0 in meta.properties.
在安装Kafka集群的时候,碰到这个问题. 我们知道在搭建Kafka集群的时候,我们需要设置broker.id,以作为当前服务器在整个集群的唯一标志. 网上搜查资料是说,log.dirs目录下的met ...
- Jquery UI 中的datepicker() ,获取日期后的回调函数onClose()
<head> //引入相关的css/js <link rel="stylesheet" href="//code.jquery.com/ui/1.10. ...
- 【SQL】四种排序开窗函数
一 .简单了解什么是开窗函数 什么是开窗函数,开窗函数有什么作用,特征是什么? 所谓开窗函数就是定义一个行为列,简单讲,就是在你查询的结果上,直接多出一列值(可以是聚合值或是排序号),特征就是带有ov ...
- for...else 小记
for ......: ...... else: ...... 在 for 循环中,若没有执行 break ,正常结束,则会执行 else 中的语句. 若执行了 break , 则 不会 执行 els ...
- Nginx+keepalived 双机热备(主主模式)
之前已经介绍了Nginx+Keepalived双机热备的主从模式,今天在此基础上说下主主模式的配置. 由之前的配置信息可知:master机器(master-node):103.110.98.14/19 ...
- LDAP学习笔记总结
一.LDAP概念LDAP是轻量目录访问协议,英文全称是Lightweight Directory Access Protocol,一般都简称为LDAP.它是基于X.500标准的,但是简单多了并且可以根 ...
- python基础学习笔记(六)
学到这里已经很不耐烦了,前面的数据结构什么的看起来都挺好,但还是没法用它们做什么实际的事. 基本语句的更多用法 使用逗号输出 >>> print 'age:',25 age: 25 ...
- 个人博客作业_week14
M1/M2阶段总结 我在M1阶段负责后端代码的开发,以及协助PM,在M2阶段负责PM,在为期将近一学期的团队软件开发过程中,我深刻体会到了团队协作的重要性,以及合理分配任务的重要性,没有一个好的时间规 ...
- Linux内核及分析 第一周 计算机是如何工作的?
C语言代码: int g(int x) { return x + 5; } int f(int x) { return g(x); } int main(void) { return f(5) + 1 ...
- Leetcode——32.最长有效括号【##】
@author: ZZQ @software: PyCharm @file: leetcode32_最长有效括号.py @time: 2018/11/22 19:19 要求:给定一个只包含 '(' 和 ...