题目链接

分析:

卡常数~~~好气啊~~~这是看脸的时代啊~~~

$A$代表$($的数量,$B$代表$)$的数量...

如果$($的数量多于$)$的数量,那么最有方案显然是添加$A-B$个$)$...反之亦然...

因为这两种情况的处理方法差不多,所以我们假定$A>B$...

因为是有循环位移操作的,所以我们我们证明一定存在一种添加方案可以使得循环位移之后在最后添加$A-B$个$)$并且字典序最小...

证明如下:

我们把$($设为$+1)$设为$-1$,那么合法的序列就是每个位置的前缀和都$>=0$,那么我们考虑找到最后一个坏点(也就是不合法的点),然后把这个位置到最后的字符全部移到前面,这样就满足了前缀没有坏点,然后对于后面的坏点我们递归进行...

那么如何找到字典序最小的满足要求的原串排列,考虑是循环位移,所以我们倍增字符串,那么一个合法的排列就是某个后缀的长度$n$的前缀,因为要字典序最小,所以我们通过后缀数组来解决...我们找到每个后缀,判断是否合法,怎么判断自己YY吧,有益身心健康~~~

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=4000000+5; int n,len,gs[maxn],sa[maxn],wb[maxn],wv[maxn],ran[maxn],sum[maxn],pre[maxn],suf[maxn]; char s[maxn],ans[maxn]; inline bool cmp(int *x,int a,int b ,int l){
return x[a]==x[b]&&x[a+l]==x[b+l];
} inline void da(int *sa,int *x,int n,int m){
int i,j,p,*y=wb;
for(i=0;i<m;i++) gs[i]=0;
for(i=0;i<n;i++) gs[x[i]]++;
for(i=1;i<m;i++) gs[i]+=gs[i-1];
for(i=n-1;~i;i--) sa[--gs[x[i]]]=i;
for(j=1,p=1;p<n;j<<=1,m=p){
for(i=n-j,p=0;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) gs[i]=0;
for(i=0;i<n;i++) gs[wv[i]]++;
for(i=1;i<m;i++) gs[i]+=gs[i-1];
for(i=n-1;~i;i--) sa[--gs[wv[i]]]=y[i];
p=1;swap(x,y);x[sa[0]]=0;
for(i=1;i<n;i++) x[sa[i]]=cmp(y,sa[i],sa[i-1],j)?p-1:p++;
}
} signed main(void){
int i,j;
scanf("%s",s);n=strlen(s);len=n<<1;
for(i=0;i<n;i++) ran[i]=(int)s[i]-39;
for(i=n;i<len;i++) ran[i]=(int)s[i-n]-39,s[i]=s[i-n];
da(sa,ran,len+1,5);
for(i=0;i<n;i++) sum[i]=sum[i-1]+(s[i]=='('?1:-1);
pre[0]=sum[0];
for(i=1;i<n;i++) pre[i]=pre[i-1]>sum[i]?sum[i]:pre[i-1];
suf[n-1]=sum[n-1];
for(i=n-2;i>=0;i--) suf[i]=suf[i+1]>sum[i]?sum[i]:suf[i+1];
for(i=1;i<=len;i++)
if(sa[i]<n){
int tmp,tmp1=suf[sa[i]]-sum[sa[i]-1],tmp2=sum[n-1]-sum[sa[i]-1]+pre[sa[i]-1];
tmp=tmp1>tmp2?tmp2:tmp1;
if(sum[n-1]>=0&&tmp>=0){
for(j=0;j<n;j++) ans[j]=s[sa[i]+j];
for(j=0;j<sum[n-1];j++) ans[j+n]=')';
puts(ans);break;
}
tmp-=sum[n-1];
if(sum[n-1]<0&&tmp>=0){
tmp=-sum[n-1];
for(j=0;j<tmp;j++) ans[j]='(';
for(j=0;j<n;j++) ans[j+tmp]=s[sa[i]+j];
puts(ans);break;
}
}
return 0;
}

  


By NeighThorn

51Nod 1561 另一种括号序列的更多相关文章

  1. [ZJOI2007]捉迷藏(动态点分治/(括号序列)(线段树))

    题目描述 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条 ...

  2. 51nod 1476 括号序列的最小代价(贪心+优先队列)

    题意 我们这有一种仅由"(",")"和"?"组成的括号序列,你必须将"?"替换成括号,从而得到一个合法的括号序列. 对于 ...

  3. BZOJ4350: 括号序列再战猪猪侠

    Description 括号序列与猪猪侠又大战了起来. 众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号 序列S合法,当且仅当: 1.( )是一个合法的括号序列. 2.若A是合法的括号序列 ...

  4. DP专题——括号序列

    毕竟是个渣,写完一遍之后又按LRJ的写了一遍,再写了一遍递归版,最终加上输出解部分 括号序列 定义如下规则序列(字符串): 空序列是规则序列: 如果S是规则序列,那么(S)和[S]也是规则序列: 如果 ...

  5. 51nod1476 括号序列的最小代价

    这题应该可以用费用流写吧?不过我想不出贪心来TAT.其实还是单调队列乱搞啊T_T //ÍøÉϵÄ̰ÐÄËã·¨ºÃÉñ°¡¡£¡£¡£ÎÒÖ»»áÓÃ×îС·ÑÓÃ×î´óÁ÷ÅÜTAT #in ...

  6. uoj #31. 【UR #2】猪猪侠再战括号序列 贪心

    #31. [UR #2]猪猪侠再战括号序列 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/31 Descript ...

  7. CODEVS 3657 括号序列

    [问题描述] 我们用以下规则定义一个合法的括号序列: (1)空序列是合法的 (2)假如S是一个合法的序列,则 (S) 和[S]都是合法的 (3)假如A 和 B 都是合法的,那么AB和BA也是合法的 例 ...

  8. bzoj1095: [ZJOI2007]Hide 捉迷藏 线段树维护括号序列 点分治 链分治

    这题真是十分难写啊 不管是点分治还是括号序列都有一堆细节.. 点分治:时空复杂度$O(n\log^2n)$,常数巨大 主要就是3个堆的初始状态 C堆:每个节点一个,为子树中的点到它父亲的距离的堆. B ...

  9. 数据结构(括号序列,线段树||点分治,堆):ZJOI 2007 捉迷藏

    [题目描述] Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N- ...

随机推荐

  1. tp5简单构造

    application 应用目录 网站核心index前台目录 controller 控制器admin 后台目录 model 数据模型view 视图extend 静态类库目录public 静态资源和入口 ...

  2. realloc函数的用法

    realloc(void *__ptr, size_t __size):更改已经配置的内存空间,即更改由malloc()函数分配的内存空间的大小. 如果将分配的内存减少,realloc仅仅是改变索引的 ...

  3. 硬件中断--DEBUG系列

    问题描述: 在线调试时,全速运行,程序进入硬件中断,查看堆栈窗口,发现是从A函数进去的.但是A函数应该没有问题的: 再次重复,发现是从B函数进去的,但是B函数之前运行起来也没有问题的,而且没有传入参数 ...

  4. react+redux状态管理实现排序 合并多个reducer文件

    这个demo只有一个reducer 所以合并reducer这个demo用不到 ,但是我写出来这样大家以后可以用到,很好用,管理多个reducer,因为只要用到redux就不会只有一个reducer所以 ...

  5. python面向对象(进阶篇)

    本篇将详细介绍Python 类的成员.成员修饰符.类的特殊成员. 类的成员: 类的成员可以分为三大类:字段(变量).方法.属性. 注:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对 ...

  6. 9.1 mysql+centos7+主从复制

    MYSQL(mariadb) MariaDB数据库管理系统是MySQL的一个分支,主要由开源社区在维护,采用GPL授权许可.开发这个分支的原因之一是:甲骨文公司收购了MySQL后,有将MySQL闭源的 ...

  7. WCF入门一[WCF概述]

    一.什么是WCF WCF是使用托管代码建立和运行面向服务(Service Oriented)应用程序的统一框架.它使得开发者能够建立一个跨平台的.安全.可信赖.事务性的解决方案,且能与已有系统兼容协作 ...

  8. 3195: [Jxoi2012]奇怪的道路

    3195: [Jxoi2012]奇怪的道路 链接 思路: 因为一个点只会和它前后k个点连边,所以,记录下每个点的前k个点和它自己(共k+1个点)的状态,1表示奇数,0表示偶数. dp[i][j][s] ...

  9. 用Mapreduce求共同好友

    import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs ...

  10. Android学习记录(8)—Activity的四种加载模式及有关Activity横竖屏切换的问题

    Activity有四种加载模式:standard(默认), singleTop, singleTask和 singleInstance.以下逐一举例说明他们的区别: standard:Activity ...