51Nod 1561 另一种括号序列
分析:
卡常数~~~好气啊~~~这是看脸的时代啊~~~
$A$代表$($的数量,$B$代表$)$的数量...
如果$($的数量多于$)$的数量,那么最有方案显然是添加$A-B$个$)$...反之亦然...
因为这两种情况的处理方法差不多,所以我们假定$A>B$...
因为是有循环位移操作的,所以我们我们证明一定存在一种添加方案可以使得循环位移之后在最后添加$A-B$个$)$并且字典序最小...
证明如下:
我们把$($设为$+1)$设为$-1$,那么合法的序列就是每个位置的前缀和都$>=0$,那么我们考虑找到最后一个坏点(也就是不合法的点),然后把这个位置到最后的字符全部移到前面,这样就满足了前缀没有坏点,然后对于后面的坏点我们递归进行...
那么如何找到字典序最小的满足要求的原串排列,考虑是循环位移,所以我们倍增字符串,那么一个合法的排列就是某个后缀的长度$n$的前缀,因为要字典序最小,所以我们通过后缀数组来解决...我们找到每个后缀,判断是否合法,怎么判断自己YY吧,有益身心健康~~~
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=4000000+5; int n,len,gs[maxn],sa[maxn],wb[maxn],wv[maxn],ran[maxn],sum[maxn],pre[maxn],suf[maxn]; char s[maxn],ans[maxn]; inline bool cmp(int *x,int a,int b ,int l){
return x[a]==x[b]&&x[a+l]==x[b+l];
} inline void da(int *sa,int *x,int n,int m){
int i,j,p,*y=wb;
for(i=0;i<m;i++) gs[i]=0;
for(i=0;i<n;i++) gs[x[i]]++;
for(i=1;i<m;i++) gs[i]+=gs[i-1];
for(i=n-1;~i;i--) sa[--gs[x[i]]]=i;
for(j=1,p=1;p<n;j<<=1,m=p){
for(i=n-j,p=0;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) gs[i]=0;
for(i=0;i<n;i++) gs[wv[i]]++;
for(i=1;i<m;i++) gs[i]+=gs[i-1];
for(i=n-1;~i;i--) sa[--gs[wv[i]]]=y[i];
p=1;swap(x,y);x[sa[0]]=0;
for(i=1;i<n;i++) x[sa[i]]=cmp(y,sa[i],sa[i-1],j)?p-1:p++;
}
} signed main(void){
int i,j;
scanf("%s",s);n=strlen(s);len=n<<1;
for(i=0;i<n;i++) ran[i]=(int)s[i]-39;
for(i=n;i<len;i++) ran[i]=(int)s[i-n]-39,s[i]=s[i-n];
da(sa,ran,len+1,5);
for(i=0;i<n;i++) sum[i]=sum[i-1]+(s[i]=='('?1:-1);
pre[0]=sum[0];
for(i=1;i<n;i++) pre[i]=pre[i-1]>sum[i]?sum[i]:pre[i-1];
suf[n-1]=sum[n-1];
for(i=n-2;i>=0;i--) suf[i]=suf[i+1]>sum[i]?sum[i]:suf[i+1];
for(i=1;i<=len;i++)
if(sa[i]<n){
int tmp,tmp1=suf[sa[i]]-sum[sa[i]-1],tmp2=sum[n-1]-sum[sa[i]-1]+pre[sa[i]-1];
tmp=tmp1>tmp2?tmp2:tmp1;
if(sum[n-1]>=0&&tmp>=0){
for(j=0;j<n;j++) ans[j]=s[sa[i]+j];
for(j=0;j<sum[n-1];j++) ans[j+n]=')';
puts(ans);break;
}
tmp-=sum[n-1];
if(sum[n-1]<0&&tmp>=0){
tmp=-sum[n-1];
for(j=0;j<tmp;j++) ans[j]='(';
for(j=0;j<n;j++) ans[j+tmp]=s[sa[i]+j];
puts(ans);break;
}
}
return 0;
}
By NeighThorn
51Nod 1561 另一种括号序列的更多相关文章
- [ZJOI2007]捉迷藏(动态点分治/(括号序列)(线段树))
题目描述 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条 ...
- 51nod 1476 括号序列的最小代价(贪心+优先队列)
题意 我们这有一种仅由"(",")"和"?"组成的括号序列,你必须将"?"替换成括号,从而得到一个合法的括号序列. 对于 ...
- BZOJ4350: 括号序列再战猪猪侠
Description 括号序列与猪猪侠又大战了起来. 众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号 序列S合法,当且仅当: 1.( )是一个合法的括号序列. 2.若A是合法的括号序列 ...
- DP专题——括号序列
毕竟是个渣,写完一遍之后又按LRJ的写了一遍,再写了一遍递归版,最终加上输出解部分 括号序列 定义如下规则序列(字符串): 空序列是规则序列: 如果S是规则序列,那么(S)和[S]也是规则序列: 如果 ...
- 51nod1476 括号序列的最小代价
这题应该可以用费用流写吧?不过我想不出贪心来TAT.其实还是单调队列乱搞啊T_T //ÍøÉϵÄ̰ÐÄËã·¨ºÃÉñ°¡¡£¡£¡£ÎÒÖ»»áÓÃ×îС·ÑÓÃ×î´óÁ÷ÅÜTAT #in ...
- uoj #31. 【UR #2】猪猪侠再战括号序列 贪心
#31. [UR #2]猪猪侠再战括号序列 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/31 Descript ...
- CODEVS 3657 括号序列
[问题描述] 我们用以下规则定义一个合法的括号序列: (1)空序列是合法的 (2)假如S是一个合法的序列,则 (S) 和[S]都是合法的 (3)假如A 和 B 都是合法的,那么AB和BA也是合法的 例 ...
- bzoj1095: [ZJOI2007]Hide 捉迷藏 线段树维护括号序列 点分治 链分治
这题真是十分难写啊 不管是点分治还是括号序列都有一堆细节.. 点分治:时空复杂度$O(n\log^2n)$,常数巨大 主要就是3个堆的初始状态 C堆:每个节点一个,为子树中的点到它父亲的距离的堆. B ...
- 数据结构(括号序列,线段树||点分治,堆):ZJOI 2007 捉迷藏
[题目描述] Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N- ...
随机推荐
- 笔记-python-standard library-26.4 unittest
笔记-python-standard library-26.4 unittest 1. unittest source code:Lib/unittest/__init__.py 它是pyt ...
- 接口&抽象类&继承&父类和子类
1.接口是什么? 接口可以理解为一个特殊的抽象类,是由全局常量和公共抽象方法组成的. 所以,如果,一个抽象类的方法都是抽象的,那么就可以通过接口的形式来表示. class 用于定义类 interfac ...
- 剑指Offer - 九度1521 - 二叉树的镜像
剑指Offer - 九度1521 - 二叉树的镜像2013-11-30 23:32 题目描述: 输入一个二叉树,输出其镜像. 输入: 输入可能包含多个测试样例,输入以EOF结束.对于每个测试案例,输入 ...
- FTP被动模式服务器端开有限的端口
很多服务器上都搭建的有FTP服务,FTP服务有两种连接模式:主动模式和被动模式.关于这两种模式的介绍,请参考这篇文章:重温FTP的主动模式和被动模式 关于这两种模式的比较,原文有这样的描述: 主动模式 ...
- Windows Phone 8.1 学习之路
前几天看一哥们写的“Android学习之路”一文很不错,遂也写一篇Windows Phone的学习之路. 开发环境 台式机 不管是台式机还是笔记本,建议配置在I5+8G以上,I3+4G的话就别考虑用模 ...
- [转]个人对AutoResetEvent和ManualResetEvent的理解
仅个人见解,不对之处请指正,谢谢. 一.作用 AutoResetEvent和ManualResetEvent可用于控制线程暂停或继续,拥有重要的三个方法:WaitOne.Set和Reset. 这三个方 ...
- Python全栈工程师(编码)
ParisGabriel Python 入门基础 补充: 主流3操作大系统 Windows: Winxp Win7 Win8 Win10 Unix: Solaris(SUN) IO ...
- 孤荷凌寒自学python第八天 初识Python的序列之元组
孤荷凌寒自学python第八天 Python的序列之元组 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) (同步音频笔记:https://www.ximalaya.com/keji/19103 ...
- centos6 install cobbler
cobbler 安装 一:定义yum源 wget -c -O CentOS-Base.repo http://mirrors.163.com/.help/CentOS6-Base-163.repo ...
- hnust py road
问题 C: Py Road 时间限制: 1 Sec 内存限制: 128 MB提交: 125 解决: 34[提交][状态][讨论版] 题目描述 Life is short,you need Pyth ...