bzoj2693 莫比乌斯反演
Description

Hint
T <= 10000
N, M<=10000000
#pragma GCC optimize(2)
#pragma G++ optimzie(2)
#include<cstring>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<algorithm> #define mod 100000009
#define N 10000007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int T,n,m;
int tot;
bool flag[N];
ll h[N],pri[N]; void init()
{
h[]=;
for (int i=;i<N;i++)
{
if(!flag[i])
{
pri[++tot]=i;
h[i]=(i-(ll)i*i)%mod;
}
for (int j=;j<=tot&&pri[j]*i<N;j++)
{
flag[pri[j]*i]=true;
if(i%pri[j]==)
{
h[pri[j]*i]=(pri[j]*h[i])%mod;
break;
}
else h[pri[j]*i]=(h[pri[j]]*h[i])%mod;
}
}
for (int i=;i<N;i++)
(h[i]+=h[i-])%=mod;
}
inline ll sum(ll x,ll y)
{
x%=mod,y%=mod;
x*=(x+),(x=x/)%=mod;
y*=(y+),(y=y/)%=mod;
return x*y%mod;
}
ll query(int n,int m)
{
ll res=;
if(n>m)swap(n,m);
for (int i=,last;i<=n;i=last+)
{
last=min(n/(n/i),m/(m/i));
res+=sum(n/i,m/i)*(h[last]-h[i-])%mod;
res%=mod;
}
return (res%mod+mod)%mod;
}
int main()
{
T=read(),init();
while(T--)
{
n=read(),m=read();
printf("%lld\n",query(n,m));
}
}
bzoj2693 莫比乌斯反演的更多相关文章
- 【BZOJ2693】jzptab(莫比乌斯反演)
[BZOJ2693]jzptab(莫比乌斯反演) 题面 讨厌权限题,只能跑到别的OJ上交 和这题是一样的 多组数据 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 前 ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- 【BZOJ2693】jzptab [莫比乌斯反演]
jzptab Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 求 Input 第一行一个 ...
- bzoj2154(莫比乌斯反演)
又是一道经典题. 1.学习了下O(n) 的做法. // // main.cpp // bzoj2154 // // Created by New_Life on 16/7/7. // Copyrigh ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- 模板:数论 & 数论函数 & 莫比乌斯反演
作为神秘奖励--?也是为了方便背. 所有的除法都是向下取整. 数论函数: \((f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})\) \((Id*\mu)(n)=\sum_{d ...
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
随机推荐
- IAR 编译时找不到头文件的解决方法
Fatal Error[Pe1696]: cannot open source file "x.h" 那是因为头文件路径没有找对 到报错的.c源文件 选中右键 选择options ...
- 匿名函数lambda python
lambda 的主体是一个表达式,不是一个代码块lambda 只有一行,仅仅能在lambda表达式种封装有限的逻辑进去匿名函数:需要一个函数,而又不想动脑筋去想名字 #普通函数的定义 def f(a, ...
- 001---web应用程序
什么是web应用? 应用程序分两种模式:C/S.B/S 1 .C/S:客户端(Client)与服务端 一般独立运行 2 .B/S:浏览器(Browser)与服务端 这类应用要借助浏览器:谷歌.火狐.I ...
- U2
android的XML文件(包括layout下的和values下的)注释一般采用 <!--注释内容 -->的方式进行,也就是说,采用//是行不通的,不信你可以试试看. 在XML中, ...
- Android通过用代码画虚线椭圆边框背景来学习一下shape的用法
在Android程序开发中,我们经常会去用到Shape这个东西去定义各种各样的形状,shape可以绘制矩形环形以及椭圆,所以只需要用椭圆即可,在使用的时候将控件比如imageview或textview ...
- 《Cracking the Coding Interview》——第17章:普通题——题目5
2014-04-28 22:44 题目:猜数字游戏.四个数字,每个都是0~9之间.你每猜一次,我都告诉你,有多少个位置和数字都对(全对),有多少个位置错数字对(半对).比如“6309”,你猜“3701 ...
- chrome flash插件改为自动运行
1.情景展示 国内网页视频播放大部分用的都是flash插件,每次都要将默认改为允许,才能正常播放 能不能让flash插件在所有的网站上都能自动运行呢? 2.解决方案 第一步:打开fla ...
- jeakins用户配置
进入jeakins:系统管理-全局安全设置 如果有多个用户视情况而定进行权限配置
- linux ubuntu开启sshd
which ssh #查看文件 sudo apt-get install ssh #安装ssh cd /etc/init.d #切换目录 ls -l | grep ssh #执行启动脚本 sudo s ...
- NGUI-使用UILabel呈现图片和不同格式的文字
1.可以使用BBCode标记 [b]Bold[/b] 粗体[i]italic[/i] 斜体[u]underli ...