玩具装箱

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+1+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小。

  首先普通dp得方程\(dp[i]=min(dp_j+(i-j-1+a_i-a_j-l)^2)\),发现有\(a_i*a_j\)的项,于是考虑斜率优化。为了简化方程,用斜率优化的套路,把只与同一下标相关的项统一起来。令\(b_i=a_i+i\),\(d_i=b_i-l-1\),那么\(dp[i]=min(dp[j]+(d_i-b_j)^2)\)。若j优于k,说明\(dp[j]-dp[k]+b_j^2-b_k^2<2d_ib_i-2d_ib_k\),再简化运算,令\(x_i=2b_i\),\(y_i=dp[i]+b_i^2\),那么知道若j优于k,\(\frac{y_j-y_k}{x_j-x_k}<d_i\),也就是可以用斜率优化,单调队列维护下凸包做。

  注意此题不存在\(c_i\)等于0,所以可以直接算斜率,不用再乘开计算。这个和hdu那道入门题不同。

#include <cstdio>
using namespace std;
typedef long long LL; const LL maxn=5e5+5;
LL n, l, h, t, sum[maxn], b[maxn], d[maxn];
LL dp[maxn], x[maxn], y[maxn], q[maxn];
inline LL sqr(LL x){ return x*x; } int main(){
scanf("%lld%lld", &n, &l);
for (LL i=1; i<=n; ++i){
scanf("%lld", &sum[i]);
sum[i]+=sum[i-1];
}
h=t=0;
for (LL i=1; i<=n; ++i){
b[i]=sum[i]+i, d[i]=b[i]-l-1;
while (h<t&&y[q[h+1]]-y[q[h]]
<d[i]*(x[q[h+1]]-x[q[h]])) ++h;
dp[i]=dp[q[h]]+sqr(d[i]-b[q[h]]);
x[i]=2*b[i], y[i]=dp[i]+sqr(b[i]);
while (h<t&&(y[i]-y[q[t]])*(x[q[t]]-x[q[t-1]])
<(x[i]-x[q[t]])*(y[q[t]]-y[q[t-1]])) --t;
q[++t]=i;
}
printf("%lld\n", dp[n]);
return 0;
}

bzoj1010 玩具装箱的更多相关文章

  1. [BZOJ1010]玩具装箱toy(斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  2. BZOJ1010玩具装箱 - 斜率优化dp

    传送门 题目分析: 设\(f[i]\)表示装前i个玩具的花费. 列出转移方程:\[f[i] = max\{f[j] + ((i - (j + 1)) + sum[i] - sum[j] - L))^2 ...

  3. luogu3195/bzoj1010 玩具装箱(斜率优化dp)

    推出来式子然后斜率优化水过去就完事了 #include<cstdio> #include<cstring> #include<algorithm> #include ...

  4. BZOJ-1010 玩具装箱toy (斜率优化)

    题目大意:将n个数分成若干组,并且每组的数在原数组中应是连续的,每组会产生的代价为sum(i)-sum(j)+i-j-1-m,m为已知的常数.求最小代价. 题目分析:定义dp(i)表示将前 i 个元素 ...

  5. 【BZOJ1010】【HNOI2008】玩具装箱(斜率优化,动态规划)

    [BZOJ1010][HNOI2008]玩具装箱 题面 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  6. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  7. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  8. 【bzoj1010】[HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9281  Solved: 3719[Submit][St ...

  9. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

随机推荐

  1. 全面解析Bootstrap手风琴效果

    触发手风琴可以通过自定义的data-toggle 属性来触发.其中data-toggle值设置为 collapse,data-target="#折叠区标识符". 第一步:设计一个面 ...

  2. POJ-1741(树分治)

    树的点分治 给出详细的讲解!!点这里打开论文-分治算法在树的路径问题中的应用 本题目是他讲的第一个例题: 我的理解:每次都找树的重心,计算以重心为根的子树之间所贡献的答案.不断这样下去:如果这棵树是一 ...

  3. codeforces 655B B. Mischievous Mess Makers(贪心)

    题目链接: B. Mischievous Mess Makers time limit per test 1 second memory limit per test 256 megabytes in ...

  4. Android数据存储的五种方法汇总

    本文介绍Android中的5种数据存储方式. 数据存储在开发中是使用最频繁的,在这里主要介绍Android平台中实现数据存储的5种方式,分别是: 1 使用SharedPreferences存储数据 2 ...

  5. 优秀开源项目之二:流媒体直播系统Open Broadcaster Software

    Open Broadcaster Software(OBS)是一款用于音视频录制和直播的免费开源软件.可以轻松部署到多种平台,目前支持Windows.MAC和Linux. 特性: 1.高性能的实时视频 ...

  6. ACM学习历程—51NOD1028 大数乘法V2(FFT)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1028 题目大意就是求两个大数的乘法. 但是用普通的大数乘法,这 ...

  7. HDU4699:Editor

    浅谈栈:https://www.cnblogs.com/AKMer/p/10278222.html 题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=46 ...

  8. 使用PowerShell创建Azure Storage的SAS Token访问Azure Blob文件

    Azure的存储包含Storage Account.Container.Blob等具体的关系如下: 我们常用的blob存储,存放在Storage Account的Container里面. 目前有三种方 ...

  9. ES6学习之Set和Map

    一.Set 1.Set 定义:Set类似于数组,但成员的值都是唯一的,没有重复的值 let s = new Set([1,2,3,4,5,2,4]); //Set { 1, 2, 3, 4, 5 } ...

  10. java报表开发之报表总述

    转自:https://blog.csdn.net/u011659172/article/details/40504271?utm_source=blogxgwz6