【BZOJ4026】dC Loves Number Theory 分解质因数+主席树
【BZOJ4026】dC Loves Number Theory
Description
Input
第一行,两个正整数,N,Q,表示序列的长度和询问的个数。
Output
Q行,对于每个询问输出一个整数。
Sample Input
3 7 10 10 5
3 4
42 44
241 242
14 9
1201 1201
0 6
245 245
7 7
6 1
1203 1203
Sample Output
240
12
1200
2
240
4
4
1200
4
题解:前置技能:强制在线版HH的项链。(好吧这道题不存在的~)
用主席树实现强制在线求区间中不同数的个数,具体做法跟树状数组的做法差不多。比如当位置i的数是x,x上一个出现的位置是j,那么我们就在i的主席树中的位置j减去1(j本身的主席树不动!!!)。当我们查询区间[l,r]中,在r的主席树中进行区间查询,这样,如果r==i并且l>j,那么我们只计算了i的贡献;如果r==i并且l<=j,那么我们依旧没有计算j的贡献;如果r<i并且l<j,那么在i之前的主席树中并没有将j删去,我们还能正常计算j的贡献。(需要好好理解一下。)
然后就水了嘛!我们知道如果$n=\prod p_i^{e_i}(p是质数)$,那么$\varphi( n)=n\prod {p_i-1\over p_i}$,所以我们只需要先预处理出所有质数,然后将每个数分解质因数,维护区间中每个质数出现的次数就好了。具体做法是:当我们分解第i个位置上的数时,如果i包含e个质因子p,那么我们要找到p上一个出现的位置j,在i的主席树中将位置j乘上$p\over p-1$(因为j处之前肯定乘过p-1),然后在i的位置乘上$(p-1)*p^{e-1}$就行了。
需要用快速幂求逆元。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn=50010;
const ll mod=1000777;
int n,m,nm,num,ans,tot;
int pri[100010],last[100010],np[1000010],v[maxn],rt[maxn];
struct sag
{
int ls,rs;
ll sc;
}s[maxn*160];
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return z;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void insert(int x,int &y,int l,int r,int pos,int val)
{
if(l>r) return ;
if(!y||y==x) y=++tot,s[y].sc=s[x].sc*val%mod;
else s[y].sc=s[y].sc*val%mod;
if(l==r) return ;
int mid=l+r>>1;
if(pos<=mid) s[y].rs=(s[y].rs)?s[y].rs:s[x].rs,insert(s[x].ls,s[y].ls,l,mid,pos,val);
else s[y].ls=(s[y].ls)?s[y].ls:s[x].ls,insert(s[x].rs,s[y].rs,mid+1,r,pos,val);
}
ll query(int x,int l,int r,int a,int b)
{
if(a<=l&&r<=b) return s[x].sc;
int mid=l+r>>1;
if(b<=mid) return query(s[x].ls,l,mid,a,b);
if(a>mid) return query(s[x].rs,mid+1,r,a,b);
return query(s[x].ls,l,mid,a,b)*query(s[x].rs,mid+1,r,a,b)%mod;
}
int main()
{
n=rd(),m=rd();
int i,j,a,b;
for(i=1;i<=n;i++) v[i]=rd(),nm=max(nm,v[i]);
for(i=2;i<=nm;i++)
{
if(!np[i]) np[i]=++num,pri[num]=i;
for(j=1;j<=num&&i*pri[j]<=nm;j++)
{
np[i*pri[j]]=-1;
if(i%pri[j]==0) break;
}
}
s[0].sc=1;
for(i=1;i<=n;i++)
{
if(v[i]==1)
{
insert(rt[i-1],rt[i],1,n,i,1);
continue;
}
for(j=1;j<=num&&pri[j]*pri[j]<=v[i];j++)
{
if(v[i]%pri[j]==0)
{
v[i]/=pri[j],insert(rt[i-1],rt[i],1,n,i,pri[j]-1);
while(v[i]%pri[j]==0) v[i]/=pri[j],insert(rt[i-1],rt[i],1,n,i,pri[j]);
if(last[j]) insert(rt[i-1],rt[i],1,n,last[j],pm(pri[j]-1,mod-2)*pri[j]%mod);
last[j]=i;
}
}
if(v[i]>1)
{
j=np[v[i]];
if(last[j]) insert(rt[i-1],rt[i],1,n,last[j],pm(pri[j]-1,mod-2)*pri[j]%mod);
last[j]=i,insert(rt[i-1],rt[i],1,n,i,pri[j]-1);
}
}
for(i=1;i<=m;i++)
{
a=rd()^ans,b=rd()^ans;
ans=int(query(rt[b],1,n,a,b));
printf("%d\n",ans);
}
return 0;
}
【BZOJ4026】dC Loves Number Theory 分解质因数+主席树的更多相关文章
- 【bzoj4026】dC Loves Number Theory 可持久化线段树
题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源. 给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n ...
- [BZOJ4026]dC Loves Number Theory(线段树)
根据欧拉函数的定义式可知,可以先算出a[l]*a[l+1]*...*a[r]的值,然后枚举所有存在的质因子*(p-1)/p. 发现这里区间中一个质因子只要计算一次,所以指计算“上一个同色点在区间外”的 ...
- BZOJ4026: dC Loves Number Theory
Description dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯 竭的水题资源. 给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所 ...
- [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树
链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...
- BZOJ 4026: dC Loves Number Theory 可持久化线段树 + 欧拉函数 + 数学
Code: #include <bits/stdc++.h> #define ll long long #define maxn 50207 #define setIO(s) freope ...
- [bzoj4026]dC Loves Number Theory_主席树_质因数分解_欧拉函数
dC Loves Number Theory 题目大意:dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源. 给定一个长度为 n的正整数序列A,有q次询问 ...
- bzoj 4026 dC Loves Number Theory 主席树+欧拉函数
题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代 ...
- BZOJ 4026 dC Loves Number Theory (主席树+数论+欧拉函数)
题目大意:给你一个序列,求出指定区间的(l<=i<=r) mod 1000777 的值 还复习了欧拉函数以及线性筛逆元 考虑欧拉函数的的性质,(l<=i<=r),等价于 (p[ ...
- bzoj 4026 dC Loves Number Theory
把我写吐了 太弱了 首先按照欧拉函数性质 我只需要统计区间不同质数个数就好了 一眼主席树 其次我被卡了分解质因数这里 可以通过质数筛时就建边解决 不够灵性啊,不知道如何改 #include<bi ...
随机推荐
- Java:集合类的区别详解
Java中集合类的区别 Array是数组,不在集合框架范畴之内,一旦选定了,它的容量大小就不能改变了,所以通常在编程中不选用数组来存放. 集合 : 集合对象:用于管理其他若干对象的对象 数组:长度不可 ...
- XShell命令行使用
1.建立连接: 2.查看总体目录: 3.查看对应服务目录: 4.删除对应jar包后,再查看目录下文件: 5.上传对应的jar文件: 6.重启服务 7.查看服务日志: 8.mv old-name new ...
- 通过脚本发送zabbix邮件报警
zabbix原生的报警媒介类型中,邮件报警是我们常用的方式.当我们在CentOS6上面安装zabbix3.0并配置邮件报警的时候,在邮件配置正确的前提下,不管触发器如何触发,邮件总是发送不出去,但是在 ...
- rsync数据同步工具的配置
rsync数据同步工具的配置 1. rsync介绍 1.1.什么是rsync rsync是一款开源的快速的,多功能的,可实现全量及增量的本地或远程数据同步备份的优秀工具.Rsync软件适用于 unix ...
- iOS block用作属性封装代码
@property (copy, nonatomic) void (^actionBlock)(); @property (copy, nonatomic) void (^actionWithPapa ...
- python 赋值 深浅拷贝
深浅拷贝 一.数字和字符串 对于 数字 和 字符串 而言,赋值.浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 impor ...
- Vue mixins extend
const mixins = { created () { console.log('mixins created') } } const mixins2 = { created () { conso ...
- 微博,and java 多线程编程 入门到精通 将cpu 的那个 张振华
http://down.51cto.com/data/2263476 java 多线程编程 入门到精通 将cpu 的那个 张振华 多个用户可以同时用一个 vhost,但是vhost之间是隔离的. ...
- Android适配方案小结(二)
该节主要记录从代码中获取与屏幕适配相关的各个參数: Java代码例如以下 public class ScreenUtil { /** * Note: * 仅仅有activity能够使用getWindo ...
- c++打印蛇形矩阵
一个m*n的矩阵里按照下图形式填充,最后形成的矩阵即为蛇形矩阵,下图是m=4, n =5时的蛇形矩阵: 方法一:逐层循环 #include <iostream> using namespa ...