裸的pell方程。 然后加个快速幂.

No more tricks, Mr Nanguo

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 320    Accepted Submission(s): 207

Problem Description
Now Sailormoon girls want to tell you a ancient idiom story named “be there just to make up the number”. The story can be described by the following words.
In the period of the Warring States (475-221 BC), there was a state called Qi. The king of Qi was so fond of the yu, a wind instrument, that he had a band of many musicians play for him every afternoon. The number of musicians is just a square number.Beacuse a square formation is very good-looking.Each row and each column have X musicians.
The king was most satisfied with the band and the harmonies they performed. Little did the king know that a member of the band, Nan Guo, was not even a musician. In fact, Nan Guo knew nothing about the yu. But he somehow managed to pass himself off as a yu player by sitting right at the back, pretending to play the instrument. The king was none the wiser. But Nan Guo's charade came to an end when the king's son succeeded him. The new king, unlike his father, he decided to divide the musicians of band into some equal small parts. He also wants the number of each part is square number. Of course, Nan Guo soon realized his foolish would expose, and he found himself without a band to hide in anymore.So he run away soon.
After he leave,the number of band is Satisfactory. Because the number of band now would be divided into some equal parts,and the number of each part is also a square number.Each row and each column all have Y musicians.
 
Input
There are multiple test cases. Each case contains a positive integer N ( 2 <= N < 29). It means the band was divided into N equal parts. The folloing number is also a positive integer K ( K < 10^9).
 
Output
There may have many positive integers X,Y can meet such conditions.But you should calculate the Kth smaller answer of X. The Kth smaller answer means there are K – 1 answers are smaller than them. Beacuse the answer may be very large.So print the value of X % 8191.If there is no answers can meet such conditions,print “No answers can meet such conditions”.
 
Sample Input
2 999888
3 1000001
4 8373
 
Sample Output
7181
600
No answers can meet such conditions
//
// main.cpp
// hdu3292
//
// Created by 陈加寿 on 15/12/1.
// Copyright (c) 2015年 陈加寿. All rights reserved.
// #include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <stdio.h>
#include <string>
#include <math.h>
using namespace std; #define MOD 8191 void matrix_mul(long long s[][],long long t[][])
{
long long tmp[][];
memset(tmp,,sizeof(tmp));
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
tmp[i][j]=(tmp[i][j]+s[i][k]*t[k][j])%MOD;
for(int i=;i<;i++)
for(int j=;j<;j++)
s[i][j]=tmp[i][j];
} int main(int argc, const char * argv[]) {
long long n,k;
while(cin>>n>>k)
{
long long x=sqrt( (double)n );
if(x*x==n)
{
printf("No answers can meet such conditions\n");
continue;
}
//然后开始寻找第一个解
long long x0,y0;
for(long long i=;;i++)
{
x=sqrt((double)(i*i*n+));
if(x*x==i*i*n+)
{
x0=x;
y0=i;
break;
}
}
long long mat[][],ans[][];
mat[][]=x0; mat[][]=y0;
mat[][]=n*y0; mat[][]=x0;
memset(ans,,sizeof(ans));
ans[][]=; ans[][]=;
k-=;
while(k)
{
if(k&) matrix_mul(ans,mat);
k>>=;
matrix_mul(mat,mat);
}
long long ans1;
ans1 = (x0*ans[][]+y0*ans[][])%MOD;
cout<<ans1<<endl;
}
return ;
}

hdu3293(pell方程+快速幂)的更多相关文章

  1. No more tricks, Mr Nanguo HDU - 3292(pell + 矩阵快速幂)

    No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Jav ...

  2. HDU 3292 【佩尔方程求解 && 矩阵快速幂】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=3292 No more tricks, Mr Nanguo Time Limit: 3000/1000 M ...

  3. hdu3483 A Very Simple Problem 非线性递推方程2 矩阵快速幂

    题目传送门 题目描述:给出n,x,mod.求s[n]. s[n]=s[n-1]+(x^n)*(n^x)%mod; 思路:这道题是hdu5950的进阶版.大家可以看这篇博客hdu5950题解. 由于n很 ...

  4. Pell方程及其一般形式

    一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...

  5. POJ 1320 Street Numbers Pell方程

    http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b  要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...

  6. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  7. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  8. CodeForces 185A 快速幂

    一开始找矩阵快速幂的题来做时就看到了这题,题意就是让你求出如图所示的第n个三角形中指向向上的小三角形个数.从图中已经很容易看出递推关系了,我们以f[n]表示第n个大三角形中upward的小三角形个数, ...

  9. [HDOJ2604]Queuing(递推,矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...

随机推荐

  1. [置顶] cAdvisor、InfluxDB、Grafana搭建Docker1.12性能监控平台

    通过cadvisor+influxdb+grafana三者有机结合,打造跨主机容器监控. 优点 1.跨主机监控,可扩展 2.容器自发现 3.历史数据长期保存 4.自定义配置程度高 缺点 1.不能自动隐 ...

  2. 设计模式之装饰器模式(PHP实现)

    /** * 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. * 这种模式创建了一个 ...

  3. Git历险记(一)

    [编者按]作为分布式版本控制系统的重要代表——Git已经为越来越多的人所认识,它相对于我们熟悉的CVS.SVN甚至同时分布式控制系统的 Mercurial,有哪些优势和不足呢.这次InfoQ中文站有幸 ...

  4. ELKStack日志离线系统

    通过Filebeat抽取数据到logstash中,转存到ElasticSearch中,最后通过Kibana进行展示 https://www.ibm.com/developerworks/cn/open ...

  5. Cocos2d-x 3.2 大富翁游戏项目开发-第七部分 获取角色路径_2

    在编写获取路径方法前,我们先把角色须要的动画文件载入进来,角色的文件为png 和 plist格式. player1_anim.png.plist             player1_anim.pn ...

  6. Tomcat 编码不一致导致乱码

    众所周知,Tomcat是一个基于HTTP协议的Java应用服务器(非Web服务器),也是一个Servlet容器. 一般我们会基于使用HTTP协议的Post或Get方法来传递内容或参数,中间会涉及一些编 ...

  7. Sublime Text 3 文档

    中文版:http://feliving.github.io/Sublime-Text-3-Documentation/ 英文版:http://www.sublimetext.com/docs/3/

  8. 全民Scheme(1):数字游戏

    刚刚看到两句话,感觉不错,分享给大家: 1.用户的问题.就是我们的问题 2.做一些用户想要的东西 (define add1 (lambda (x) (+ 1 x))) (define sub1 (la ...

  9. Python中的import和from import

    一.Python路径介绍 在python用import或者from...import来导入相应的模块. 模块其实就是一些函数和类的集合文件,它能实现一些相应的功能,当我们需要使用这些功能的时候,直接把 ...

  10. Win10系统如何关闭"启用病毒防护""启用Windows防火墙"提示?

    Win10系统如何关闭"启用病毒防护""启用Windows防火墙"提示?   目前已经有不少有用户升级到了win10正式版系统,不过有一些原win7/win8. ...