传送门

题目大意

给你m个机器,n个数,每个机器可以给n个数的某一段排序,求最少使用几个机器,保证可以把这个n个数排好序

分析

我们可以想到dpij表示考虑前i个机器让最大的数到达点j至少需要使用多少个机器,转移为:

dp[i][j]=min{dp[i][j],dp[i-1][j'](s[i]<=j'<=t[i])}.

我们发现可以去掉一维变为

dp[j]=min{dp[j],dp[j'](s[i]<=j'<=t[i])}.

到了这里我们便不难想到如何用线段树优化了,详见代码。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int inf = 2e9+;
int d[],s[],t[];
inline void build(int le,int ri,int wh,int pl,int k){
if(le==ri){
d[wh]=k;
return;
}
int mid=(le+ri)>>;
if(mid>=pl)build(le,mid,wh<<,pl,k);
else build(mid+,ri,wh<<|,pl,k);
d[wh]=min(d[wh<<],d[wh<<|]);
return;
}
inline int q(int le,int ri,int wh,int x,int y){
if(le>=x&&ri<=y)return d[wh];
int mid=(le+ri)>>,ans=inf;
if(mid>=x)ans=min(ans,q(le,mid,wh<<,x,y));
if(mid<y)ans=min(ans,q(mid+,ri,wh<<|,x,y));
return ans;
}
int main(){
int n,m,i,j,k;
scanf("%d%d",&n,&m);
for(i=;i<=m;i++)
scanf("%d%d",&s[i],&t[i]);
build(,n,,,);
for(i=;i<=n;i++)
build(,n,,i,inf);
for(i=;i<=m;i++){
int x=min(q(,n,,t[i],t[i]),q(,n,,s[i],t[i])+);
build(,n,,t[i],x);
}
printf("%d\n",q(,n,,n,n));
return ;
}

poj1769 Minimizing maximizer的更多相关文章

  1. POJ1769 Minimizing maximizer(DP + 线段树)

    题目大概就是要,给一个由若干区间[Si,Ti]组成的序列,求最小长度的子序列,使这个子序列覆盖1到n这n个点. dp[i]表示从第0个到第i个区间且使用第i个区间,覆盖1到Ti所需的最少长度 对于Si ...

  2. Minimizing maximizer(POJ 1769)

    原题如下: Minimizing maximizer Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 5104   Accep ...

  3. poj 1769 Minimizing maximizer 线段树维护dp

    题目链接 给出m个区间, 按区间给出的顺序, 求出覆盖$ [1, n] $ 至少需要多少个区间. 如果先给出[10, 20], 在给出[1, 10], 那么相当于[10, 20]这一段没有被覆盖. 令 ...

  4. POJ.1769.Minimizing maximizer(线段树 DP)

    题目链接 /* 题意:有m个区间,问最少要多少个区间能覆盖[1,n] 注:区间要按原区间的顺序,不能用排序贪心做 设dp[i]表示最右端端点为i时的最小值 dp[e[i]]=min{dp[s[i]]~ ...

  5. uva 1322 Minimizing Maximizer

    题意: 有n个数,m个排序器,每个排序器可以把区间ai到bi的数从小到大排序.这m个排序器的输出就是m个排序之后的第n个数. 现在发现有些排序器是多余的.问至少需要多少个排序器可以使得输出不变.排序器 ...

  6. UVA-1322 Minimizing Maximizer (DP+线段树优化)

    题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...

  7. POJ 1769 Minimizing maximizer(DP+zkw线段树)

    [题目链接] http://poj.org/problem?id=1769 [题目大意] 给出一些排序器,能够将区间li到ri进行排序,排序器按一定顺序摆放 问在排序器顺序不变的情况下,一定能够将最大 ...

  8. POJ 1769 Minimizing maximizer (线段树优化dp)

    dp[i = 前i中sorter][j = 将min移动到j位置] = 最短的sorter序列. 对于sorteri只会更新它右边端点r的位置,因此可以把数组改成一维的,dp[r] = min(dp[ ...

  9. Minimizing Maximizer

    题意: 最少需要多少个区间能完全覆盖整个区间[1,n] 分析: dp[i]表示覆盖[1,i]最少需要的区间数,对于区间[a,b],dp[b]=min(dp[a...b-1])+1;用线段树来维护区间最 ...

随机推荐

  1. angular复选框式js树形菜单(二)

    删除(过滤)树形结构某一个子节点: function filterTreeData(treeData){ angular.forEach(treeData,function(item){ if (it ...

  2. 2018.8.10 programming bat based on python

    @echo off REM Current DevProg Version. Match the pip package version (x.y.z)SET currentversion=0.4.0 ...

  3. Redis底层探秘(二):链表和跳跃表

    链表简介 链表提供了高效的节点重排能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地跳转链表的长度. 作为一种常用数据结构,链表内置在很多高级的编程语言里面,因为Redis使用C语言并没有内 ...

  4. Audiophobia(Floyd算法)

    个人心得:这在一定途径上完成查询方面还是很吃力,得多锻炼空间能力,不能再每次都看到就后退,要全力应对, 那怕被虐的不要不要的. 这题主要是求俩个端点中所有路径中最大构成的集合中最小的数值,其实开始思想 ...

  5. LeetCode Binary Tree Tilt

    原题链接在这里:https://leetcode.com/problems/binary-tree-tilt/description/ 题目: Given a binary tree, return ...

  6. LeetCode 336. Palindrome Pairs

    原题链接在这里:https://leetcode.com/problems/palindrome-pairs/ 题目: Given a list of unique words, find all p ...

  7. 洛谷 P2822 组合数问题

    题目描述 组合数C_n^mC​n​m​​表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的 ...

  8. django1.7 HTML模板中{%url%}的使用

    转载:https://my.oschina.net/jastme/blog/345265

  9. laravel csrf保护

    有时候我们的项目需要和外部的项目进行接口对接,如果是post的方式请求;laravel要求csrf保护 但是别人是ci框架或者没有csrf_token的;该如何处理呢? 可以把我们不需要csrf的ur ...

  10. Nginx解决错误413 Request Entity Too Large

    最近一个项目当中,要求上传图片,并且限制图片大小,虽然在laravel当中已经添加了相关的表单验证来阻止文件过大的上传,然而当提交表单时,还没轮到laravel处理,nginx就先报错了.当你仔细看报 ...