题目描述

样例输入

4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3

样例输出

3.66666667


题解

分数规划+Spfa判负环

二分答案mid,并将所有边权减去mid,然后再判负环,若有负环则调整下界,否则调整上界,直至上下界基本重合。

证明:显然

由于有(c+d)/(a+b+k)>(c+d)/(a+b)≥min(c/a,d/b),所以两个相交环形成的新环一定不是最优解,即答案一定是简单环。

如果存在环使得边权和/点数<mid,那么就有边权和<点数*mid。

又因为环中点数和边数相等,所以有边权和小于边数*mid,移项即得:存在负环。

这个时候需要调整上界,进一步更新答案;否则不存在则调整下界。

然后这道题的坑点:需要用dfs版Spfa判负环,据说bfs版会T,不明觉厉。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define eps 1e-9
#define N 3010
#define M 10010
using namespace std;
int n , m , head[N] , to[M] , next[M] , cnt , x[M] , y[M] , vis[N];
double len[M] , dis[N] , z[M];
void add(int x , int y , double z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
bool dfs(int x)
{
int i;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
{
if(dis[to[i]] > dis[x] + len[i])
{
dis[to[i]] = dis[x] + len[i];
if(vis[to[i]]) return 1;
if(dfs(to[i])) return 1;
}
}
vis[x] = 0;
return 0;
}
bool judge(double mid)
{
int i;
memset(head , 0 , sizeof(head));
memset(vis , 0 , sizeof(vis));
memset(dis , 0 , sizeof(dis));
cnt = 1;
for(i = 1 ; i <= m ; i ++ ) add(x[i] , y[i] , z[i] - mid);
for(i = 1 ; i <= n ; i ++ ) if(dfs(i)) return 1;
return 0;
}
int main()
{
int i;
double l = 100000000.0 , r = -100000000.0 , mid;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%lf" , &x[i] , &y[i] , &z[i]) , l = min(l , z[i]) , r = max(r , z[i]);
while(l <= r)
{
mid = (l + r) / 2;
if(judge(mid)) r = mid - eps;
else l = mid + eps;
}
printf("%.8lf\n" , (l + r) / 2);
return 0;
}

【bzoj1486】[HNOI2009]最小圈 分数规划+Spfa的更多相关文章

  1. [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环

    题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...

  2. [HNOI2009]最小圈 分数规划 spfa判负环

    [HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...

  3. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

  4. Luogu3199 HNOI2009 最小圈 分数规划、SPFA

    传送门 可以发现它的式子是一个分数规划的式子,所以可以二分答案,将所有边权减掉当前二分值之后跑一边$SPFA$判断负环即可. 然而这道题把$BFS-SPFA$卡掉了却没卡$DFS-SPFA$ 出题人: ...

  5. BZOJ1486 HNOI2009 最小圈 【01分数规划】

    BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...

  6. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  7. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  8. 【BZOJ1486】【HNOI2009】最小圈 分数规划 dfs判负环。

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  9. 分数规划(Bzoj1486: [HNOI2009]最小圈)

    题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...

随机推荐

  1. css中有些属性的前面会加上“*”或“_”,请问分别表示什么意思?

    给不同的浏览器识别 例如: color{ background-color: #CC00FF; /*所有浏览器都会显示为紫色*/ background-color: #FF0000\9; /*IE6. ...

  2. this以及执行上下文概念的重新认识

    在理解this的绑定过程之前,必须要先明白调用位置,调用位置指的是函数在代码中被调用的位置,而不是声明所在的位置. (ES6的箭头函数不在该范围内,它的this在声明时已经绑定了,而不是取决于调用时. ...

  3. 【赛时总结】 ◇赛时·III◇ AtCoder ABC-099

    ◆赛时·III◆ ABC-099 ■唠叨■ 不要问我为什么先给ABC-100写了博客再写的ABC-099-- 莫名觉得这次比赛特别简单--虽然我并没有参加比赛,只是之后再补做的.QwQ ■试题& ...

  4. datatable常用设置

    bSort: false, // 是否排序功能 bFilter: false, // 过滤功能 bPaginate: true, // 翻页功能 bInfo: true, // 页脚信息 bProce ...

  5. go get超时解决办法

    go get gopkg.in/yaml.v2超时,发现被墙了,解决办法如下: 1.安装golang.org/x/net $ mkdir -p $GOPATH/src/golang.org/x/ $ ...

  6. 【c学习-6】

    void myFunction4(){ //根据用户字段和密码字段判定是否允许登录 //定义原密码和用户字段 char user[10]={"liupeng"};//设置用户名字段 ...

  7. 天气预报api-汇总

    和风天气 https://www.heweather.com/

  8. PHP脚本执行效率性能检测之WebGrind的使用

    webgrind这个性能检测是需要xdebug来配合,因为webgrind 进行性能检测分析就是通过xdebug生成的日志文件进行编译分析的 那么这就需要们配置好xdebug,这个一般的php 版本都 ...

  9. Laravel5.5.x集成Swagger (L5-Swagger) 只讲Laravel5.5.x的集成,laravel其他版本请自行研究或参考github上的说明

    --------上图 截取自Github 官网上的安装参考----------------------------------------------------------------------- ...

  10. Linux基本的指令操作

    绝对路径: 路径的写法,由根目录/写起,例如:/usr/share/doc这个目录. 相对路径: 路径的写法,不由/写起,例如由/usr/share/doc要到/usr/share/man底下时,可以 ...