Hessian矩阵【转】
http://blog.sina.com.cn/s/blog_7e1ecaf30100wgfw.html
在数学中,海塞矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,一元函数就是二阶导,多元函数就是二阶偏导组成的矩阵。求向量函数最小值时可以使用,矩阵正定是最小值存在的充分条件。经济学中常常遇到求最优的问题,目标函数是多元非线性函数的极值问题,尚无一般的求解方法,但判定局部极小值的方法就是用hessian矩阵:
在x0点上,hessian矩阵是负定的,且各分量的一阶偏导数为0,则x0为极大值点。
在x0点上,hessian矩阵式正定的,且各分量的一阶偏导数为0,则x0为极小值点。
矩阵是负定的充要条件是各个特征值均为负数。
矩阵是正定的充要条件是各个特征值均为正数。
函数如下:

如果f所有的二阶导数都存在,那么f的海塞矩阵即为:H(f)ij(x) = DiDjf(x),即

(也有人把海色定义为以上矩阵的行列式)海赛矩阵被应用于牛顿法解决的大规模优化问题。
性质
对称性:如果函数f在D区域内二阶连续可导,那么f海塞矩阵H(f)在D内为对称矩阵。原因是:如果函数f连续,则二阶偏导数的求导顺序没有区别,即:

则对于海塞矩阵H(f),有
,所以
为对称矩阵。
多元函数极值的判定
如果实值多元函数
二阶连续可导,并且在临界点M(xi)(其中i=1,2,...,n,并且Xi已知)处梯度(一阶导数)等于0,即
,则M为驻点。仅通过一阶导数无法判断在临界点M处是极大值还是极小值。
记f在M点处的黑塞矩阵为H(M)。由于f在M点处连续,所以H(M)是一个
的对称矩阵,对于H(M),由如下结论:
Hessian矩阵【转】的更多相关文章
- Jacobian矩阵和Hessian矩阵
1.Jacobian矩阵 在矩阵论中,Jacobian矩阵是一阶偏导矩阵,其行列式称为Jacobian行列式.假设 函数 $f:R^n \to R^m$, 输入是向量 $x \in R^n$ ,输出为 ...
- Hessian矩阵
http://baike.baidu.com/link?url=o1ts6Eirjn5mHQCZUHGykiI8tDIdtHHOe6IDXagtcvF9ncOfdDOzT8tmFj41_DEsiUCr ...
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- Hessian矩阵与多元函数极值
Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...
- Hessian矩阵与牛顿法
Hessian矩阵与牛顿法 牛顿法 主要有两方面的应用: 1. 求方程的根: 2. 求解最优化方法: 一. 为什么要用牛顿法求方程的根? 问题很多,牛顿法 是什么?目前还没有讲清楚,没关系,先直观理解 ...
- 三维重建面试4:Jacobian矩阵和Hessian矩阵
在使用BA平差之前,对每一个观测方程,得到一个代价函数.对多个路标,会产生一个多个代价函数的和的形式,对这个和进行最小二乘法进行求解,使用优化方法.相当于同时对相机位姿和路标进行调整,这就是所谓的BA ...
- 【机器学习】梯度、Hessian矩阵、平面方程的法线以及函数导数的含义
想必单独论及" 梯度.Hessian矩阵.平面方程的法线以及函数导数"等四个基本概念的时候,绝大部分人都能够很容易地谈个一二三,基本没有问题. 其实在应用的时候,这几个概念经常被混 ...
- 梯度、Hessian矩阵、平面方程的法线以及函数导数的含义
本文转载自: Xianling Mao的专栏 =========================================================================== 想 ...
- 使用python,pytorch求海森Hessian矩阵
考虑一个函数$y=f(\textbf{x}) (R^n\rightarrow R)$,y的Hessian矩阵定义如下: 考虑一个函数:$$f(x)=b^Tx+\frac{1}{2}x^{T}Ax\\其 ...
随机推荐
- c++动态库封装及调用(1、动态库介绍)
1.一个程序从源文件编译生成可执行文件的步骤: 预编译 --> 编译 --> 汇编 --> 链接 (1)预编译,即预处理,主要处理在源代码文件中以“#”开始的预编译指令,如宏展开 ...
- java web 开发模式
1.Model1 javaBean+jsp:jsp直接操作数据库,不安全,开发维护复杂 2.Model2:MVC 原理:把Model1的操作javaBean操作抽取为控制层 实现:控制层使用servl ...
- BZOJ3224_普通平衡树_KEY
题目传送门 平衡二叉树(Balanced Binary Tree)具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.平衡二叉树的常用实现方法有红 ...
- 【LG3527】[POI2011]MET-Meteors
[LG3527][POI2011]MET-Meteors 题面 洛谷 题解 整体二分. 每次二分\(mid\),如果到时间\(mid\)以收集过\(P_i\)就存入子序列\(L\),否则存入子序列\( ...
- 05-JVM对象探秘
一.对象的内存布局 以Hotspot虚拟机为例,对象在内存中的结构可以分为三部分:对象头(header).实例数据(instance data).对齐填充(padding). 1.1. ...
- Object里面的方法
object里面有12个方法,没写完,写一些部分代表 toString():输出对象的地址字符串(hashcode码) equals():用的是==,比较的是引用,在有些类里面是重写了这个方法的,重写 ...
- python3读取csv文件
代码如下 import csv with open('D:\\abc\\userinfo.csv',newline='') as f: reader = csv.reader(f) for row i ...
- jmeter基础之录制篇
一.前言 jmeter如今被越来越多人喜爱的一款测试工具,相比于loadrunner它体积特轻便.jmeter不仅用来做单接口测试,压测还能做性能,主要是一款开源的,可以写一个你需要的插件功能再添加里 ...
- 【转】关于cocos2dx+lua注册事件函数详解
转载:http://www.taikr.com/article/1605 registerScriptTouchHandler 注册触屏事件registerScriptTapHandler注册点击事件 ...
- jQuery筛选器及对DOM修改(学习笔记)
1.jQuery筛选器 注意:请先在管理Nuget程序包中查找jQuery包,并安装.也可以在jQuery官网下载. 实现: <!DOCTYPE html> <html xmlns= ...