UVa 1625 - Color Length(线性DP + 滚动数组)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4500
题意:
输入两个长度分别为n和m(n,m≤5000)的颜色序列,要求按顺序合并成同一个序列,即每次可以把一个序列开头的颜色放到新序列的尾部。
对于每个颜色c来说,其跨度L(c)等于最大位置和最小位置之差。你的任务是找一种合并方式,使得所有L(c)的总和最小。
分析:
首先,因为选取顺序的问题,该题满足无后效性。
也满足最优子结构性质:当在部分最终序列的后面添加一个颜色时,需要把所有“已经出现但还没结束”的颜色的L(c)值加1。
这样,部分最终序列的L(c)值之和越小越好,即只需保留其最小值。
设d(i,j)表示两个序列已经分别移走了i和j个元素的最小费用。
当把一个颜色移到最终序列前,需要把所有“已经出现但还没结束”的颜色的L(c)值加1。
因为并不关心每个颜色的L(c),所以只需要知道有多少种颜色已经开始但尚未结束。
这样,可以事先算出每个颜色在两个序列中的开始和结束位置,
就可以在动态规划时在O(1)时间内计算出状态d(i,j)中“有多少个颜色已经出现但尚未结束”(用c数组记录)。
因为序列a[1..i]与序列b[1...j]组成的序列的最后一个字符必然是a[i]或b[j],
所以状态转移方程为:dp(i,j) = min(dp(i-1,j) + c[i-1][j] , dp(i,j-1) + c[i][j-1])。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int INF = 0x3f3f3f3f;
const int UP = + ;
int sa[], sb[], ea[], eb[]; // sa[i]代表序列a中颜色i的开始位置
int d[][UP], c[][UP]; // d[i][j]为两个序列分别移走了i和j个元素的最小费用,c数组记录有多少个颜色已经出现但尚未结束,d, c均为滚动数组
char a[UP], b[UP]; // 元素序号从1开始 int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%s%s", a+, b+);
int La = strlen(a+), Lb = strlen(b+);
for(int i = ; i < ; i++) sa[i] = sb[i] = INF, ea[i] = eb[i] = ;
for(int i = ; i <= La; i++){
a[i] -= 'A';
sa[a[i]] = min(sa[a[i]], i);
ea[a[i]] = i;
}
for(int i = ; i <= Lb; i++){
b[i] -= 'A';
sb[b[i]] = min(sb[b[i]], i);
eb[b[i]] = i;
} d[][] = c[][] = ;
for(int j = , t = ; t <= La; t++, j ^= ){
for(int i = ; i <= Lb; i++){
if(!t && !i) continue; int v = INF, v2 = INF;
if(t) v = d[j^][i] + c[j^][i]; //在a[1..t-1]与b[1..i]后加a[t]
if(i) v2 = d[j][i-] + c[j][i-]; //在a[1..t]与b[1..i-1]后加b[i]
d[j][i] = min(v, v2); if(t){
c[j][i] = c[j^][i];
if(sa[a[t]] == t && sb[a[t]] > i) c[j][i]++;
if(ea[a[t]] == t && eb[a[t]] <= i) c[j][i]--;
}
else{
c[j][i] = c[j][i-];
if(sb[b[i]] == i && sa[b[i]] > t) c[j][i]++;
if(eb[b[i]] == i && ea[b[i]] <= t) c[j][i]--;
}
}
}
printf("%d\n", d[La&][Lb]);
}
return ;
}
UVa 1625 - Color Length(线性DP + 滚动数组)的更多相关文章
- UVA - 1625 Color Length[序列DP 代价计算技巧]
UVA - 1625 Color Length 白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束 和模拟赛那道环形DP很想,计算这 ...
- UVA - 1625 Color Length[序列DP 提前计算代价]
UVA - 1625 Color Length 白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束 和模拟赛那道环形DP很想,计算这 ...
- UVa 1625 Color Length
思路还算明白,不过要落实到代码上还真敲不出来. 题意: 有两个由大写字母组成的颜色序列,将它们合并成一个序列:每次可以把其中一个序列开头的颜色放到新序列的尾部. 对于每种颜色,其跨度定义为合并后的序列 ...
- cf909C 线性dp+滚动数组好题!
一开始一直以为是区间dp.. /* f下面必须有一个s 其余的s可以和任意f进行匹配 所以用线性dp来做 先预处理一下: fffssfsfs==>3 0 1 1 dp[i][j] 表示第i行缩进 ...
- [tyvj 1061] Mobile Service (线性dp 滚动数组)
3月15日第一题! 题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目描述 一个公司有三个移动服务员.如果某个地方有一个请求,某个员工必须 ...
- UVa 1625 Color Length (DP)
题意:给定两个序列,让你组成一个新的序列,让两个相同字符的位置最大差之和最小.组成方式只能从一个序列前部拿出一个字符放到新序列中. 析:这个题状态表示和转移很容易想到,主要是在处理上面,dp[i][j ...
- UVA 1625 Color Length 颜色的长度 (预处理+dp)
dp[i][j]表示前一个序列拿了i个颜色,后一个序列拿了j个颜色的最小花费. 转移的时候显然只能向dp[i+1][j],或dp[i][j+1]转移,每增加拿走一个颜色,之前已经出现但没结束的颜色个数 ...
- UVA 1625 "Color Length" (基础DP)
传送门 •参考资料 [1]:HopeForBetter •题意 •题解(by 紫书) •我的理解 用了一上午的时间,参考紫书+上述博文,终于解决了疑惑: 定义第一个颜色序列用串 s 表示,第二个用串 ...
- HDU 1024 Max Sum Plus Plus --- dp+滚动数组
HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...
随机推荐
- Java开发规范(MySQL开发规范)-《阿里巴巴Java开发手册》
官方介绍:https://yq.aliyun.com/articles/69327 官方GitHub(包括IDE规范检查插件):https://github.com/alibaba/p3c 1.0.2 ...
- [转]oracle update set select from 关联更新
本文转自:http://blog.csdn.net/disiwei1012/article/details/52589181 http://www.blogjava.net/Jhonney/archi ...
- MyBatis 学习(一)
一.MyBatis 1.MyBatis 介绍(百度) MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数 ...
- 互联网轻量级框架SSM-查缺补漏第六天【级联+延迟加载特辑】
简言:本来这是昨天看的,但是因为想好好写一下[级联]这个东西,所以就看完之后今天来整理一下. 级联 1. 什么是级联 级联是一个数据库实体的概念.比如教师就需要存在学生与之对应,这样就有教师学生表,一 ...
- 四层协议和Socket编程
<四层协议图> <Soclet编程模型图>
- JBPM学习第4篇:10分钟熟悉Eclipse
http://download.jboss.org/jbpm/videos/7.0.0.Final_eclipse_getting_started.swf 打开视频练习 1.导入 evaluation ...
- Spring和Hibernate结合的一个小例子
1.新建一个SpringHibernate的maven项目 2.pom文件的依赖为 <dependency> <groupId>junit</groupId> &l ...
- ECMA6所有知识点大概笔记
ECMAScript和JavaScript的关系是,前者是后者的规格,后者是前者的一种实现 初学者一开始学习JavaScript,其实就是在学3.0版的语法. -------------------- ...
- async await基本使用
//——<ES6经典入门到进阶>牧码人-Strive 学习笔记//express示例 const fs = require('fs'); //简单封装 fs封装成一个promise con ...
- 转动的八卦图纯css实现
这类的东西网上一搜就是大把的,看着比较空旷的博客,所以自己也来写一个. <!DOCTYPE html> <html> <head> <meta chars ...