拓扑排序的实现_TopoSort
拓扑排序是求一个AOV网(顶点代表活动, 各条边表示活动之间的率先关系的有向图)中各活动的一个拓扑序列的运算, 可用于測试AOV
网络的可行性.
整个算法包含三步:
1.计算每一个顶点的入度, 存入InDegree数组中.
2.检查InDegree数组中顶点的入度, 将入度为零的顶点进栈.
3.不断从栈中弹出入度为0的顶点并输出, 并将该顶点为尾的全部邻接点的入度减1, 若此时某个邻接点的入度为0, 便领其进栈. 反复步骤
3, 直到栈为空时为止. 此时, 或者所有顶点都已列出, 或者因图中包括有向回路, 顶点未能所有列出.
实现代码:
#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
enum ResultCode { Underflow, Overflow, Success, Duplicate, NotPresent, Failure, HasCycle };
template <class T>
struct ENode
{
ENode() { nxtArc = NULL; }
ENode(int vertex, T weight, ENode *nxt) {
adjVex = vertex;
w = weight;
nxtArc = nxt;
}
int adjVex;
T w;
ENode *nxtArc;
/* data */
};
template <class T>
class Graph
{
public:
virtual ~Graph() {}
virtual ResultCode Insert(int u, int v, T &w) = 0;
virtual ResultCode Remove(int u, int v) = 0;
virtual bool Exist(int u, int v) const = 0;
/* data */
};
template <class T>
class LGraph: public Graph<T>
{
public:
LGraph(int mSize);
~LGraph();
ResultCode Insert(int u, int v, T &w);
ResultCode Remove(int u, int v);
bool Exist(int u, int v) const;
int Vertices() const { return n; }
void Output();
protected:
ENode<T> **a;
int n, e;
/* data */
};
template <class T>
void LGraph<T>::Output()
{
ENode<T> *q;
for(int i = 0; i < n; ++i) {
q = a[i];
while(q) {
cout << '(' << i << ' ' << q -> adjVex << ' ' << q -> w << ')';
q = q -> nxtArc;
}
cout << endl;
}
cout << endl << endl;
}
template <class T>
LGraph<T>::LGraph(int mSize)
{
n = mSize;
e = 0;
a = new ENode<T>*[n];
for(int i = 0; i < n; ++i)
a[i] = NULL;
}
template <class T>
LGraph<T>::~LGraph()
{
ENode<T> *p, *q;
for(int i = 0; i < n; ++i) {
p = a[i];
q = p;
while(p) {
p = p -> nxtArc;
delete q;
q = p;
}
}
delete []a;
}
template <class T>
bool LGraph<T>::Exist(int u, int v) const
{
if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return false;
ENode<T> *p = a[u];
while(p && p -> adjVex != v) p = p -> nxtArc;
if(!p) return false;
return true;
}
template <class T>
ResultCode LGraph<T>::Insert(int u, int v, T &w)
{
if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
if(Exist(u, v)) return Duplicate;
ENode<T> *p = new ENode<T>(v, w, a[u]);
a[u] = p;
e++;
return Success;
}
template <class T>
ResultCode LGraph<T>::Remove(int u, int v)
{
if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
ENode<T> *p = a[u], *q = NULL;
while(p && p -> adjVex != v) {
q = p;
p = p -> nxtArc;
}
if(!p) return NotPresent;
if(q) q -> nxtArc = p -> nxtArc;
else a[u] = p -> nxtArc;
delete p;
e--;
return Success;
}
template <class T>
class ExtLgraph: public LGraph<T>
{
public:
ExtLgraph(int mSize): LGraph<T>(mSize) {}
void TopoSort(int *order);
private:
void CallInDegree(int *InDegree);
/* data */
};
template <class T>
void ExtLgraph<T>::TopoSort(int *order)
{
int *InDegree = new int[LGraph<T>::n];
int top = -1; // 置栈顶指针为-1, 代表空栈
ENode<T> *p;
CallInDegree(InDegree); // 计算每一个顶点的入度
for(int i = 0; i < LGraph<T>::n; ++i)
if(!InDegree[i]) { // 图中入度为零的顶点进栈
InDegree[i] = top;
top = i;
}
for(int i = 0; i < LGraph<T>::n; ++i) { // 生成拓扑排序
if(top == -1) throw HasCycle; // 若堆栈为空, 说明图中存在有向环
else {
int j = top;
top = InDegree[top]; // 入度为0的顶点出栈
order[i] = j;
cout << j << ' ';
for(p = LGraph<T>::a[j]; p; p = p -> nxtArc) { // 检查以顶点j为尾的全部邻接点
int k = p -> adjVex; // 将j的出邻接点入度减1
InDegree[k]--;
if(!InDegree[k]) { // 顶点k入度为0时进栈
InDegree[k] = top;
top = k;
}
}
}
}
}
template <class T>
void ExtLgraph<T>::CallInDegree(int *InDegree)
{
for(int i = 0; i < LGraph<T>::n; ++i)
InDegree[i] = 0; // 初始化InDegree数组
for(int i = 0; i < LGraph<T>::n; ++i)
for(ENode<T> *p = LGraph<T>::a[i]; p; p = p -> nxtArc) // 检查以顶点i为尾的全部邻接点
InDegree[p -> adjVex]++; // 将顶点i的邻接点p -> adjVex的入度加1
}
int main(int argc, char const *argv[])
{
ExtLgraph<int> lg(9);
int w = 10; lg.Insert(0, 2, w); lg.Insert(0, 7, w);
lg.Insert(2, 3, w); lg.Insert(3, 5, w);
lg.Insert(3, 6, w); lg.Insert(4, 5, w);
lg.Insert(7, 8, w); lg.Insert(8, 6, w);
int *order = new int[9];
lg.TopoSort(order);
cout << endl;
delete []order;
return 0;
}
拓扑排序的实现_TopoSort的更多相关文章
- 算法与数据结构(七) AOV网的拓扑排序
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
- 【BZOJ-2938】病毒 Trie图 + 拓扑排序
2938: [Poi2000]病毒 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 609 Solved: 318[Submit][Status][Di ...
- BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...
- 图——拓扑排序(uva10305)
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...
- Java排序算法——拓扑排序
package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...
- poj 3687(拓扑排序)
http://poj.org/problem?id=3687 题意:有一些球他们都有各自的重量,而且每个球的重量都不相同,现在,要给这些球贴标签.如果这些球没有限定条件说是哪个比哪个轻的话,那么默认的 ...
- 拓扑排序 - 并查集 - Rank of Tetris
Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球 ...
- *HDU1285 拓扑排序
确定比赛名次 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
随机推荐
- bzoj1030 AC自动机+dp
思路:建状态图,在状态图上dp. #include<bits/stdc++.h> #define LL long long #define ll long long #define fi ...
- spawn-fcgi出错处理
/usr/local/nginx/sbin/spawn-fcgi -a 127.0.0.1 -p 9002 -C 25 -f /usr/local/nginx/cgibin/lzgFastCGI 添加 ...
- CF1025B Weakened Common Divisor【数论/GCD/思维】
#include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...
- BZOJ 4756 [Usaco2017 Jan]Promotion Counting(线段树合并)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4756 [题目大意] 给出一棵树,对于每个节点,求其子树中比父节点大的点个数 [题解] ...
- 【贪心】【set】zoj3963 Heap Partition
贪心地从前往后扫,每到一个元素,就查看之前的元素中小于等于其的最大的元素是否存在,如果存在,就将它置为其父亲.如果一个结点已经是两个儿子的父亲了,就不能在set中存在了,就将他删除.如果然后将当前元素 ...
- 【莫比乌斯反演+容斥】BZOJ2301-[HAOI2011]Problem b(成为权限狗的第一题纪念!)
[题目大意] 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. [思路] “怎么又是你系列……”思路 ...
- 【bfs+优先队列】POJ2312-Battle City
[思路] 题目中的“可以沿直线发射打破砖墙”可能会迷惑到很多人,实际上可以等价理解为“通过砖墙的时间为2个单位”,这样题目就迎刃而解了.第一次碰到时可能不能很好把握,第二次基本就可以当作水题了. [错 ...
- CDOJ 1277 智商杯考试 每周一题 div2 二分+数学
智商杯考试 题目连接: http://acm.uestc.edu.cn/#/problem/show/1277 Description 你是一个挂科选手. 你现在正在考试,你很方. 你参加的考试叫做智 ...
- 这些年,我们一直追随的.NET
闲来无事,浏览自己的QQ空间,意外发现自己在13年1月份的发在QQ空间写的一片关于技术的随笔,觉得应该将其移到这里: 这些年,我们一直追随的.NET 前两天,意外地看到了.NET平台为异 ...
- 莫名其妙的float:left; 不能使元素紧贴父级的坑
这是项目中遇到的一个CSS的坑,做个记录,主要的原因还是浮动后脱离文档流,两个浮动的元素处于同一文档流中会相互影响位置的问题: 先上代码吧: 效果预览地址:浮动不能靠左的情况; 原本红色模块应该处于蓝 ...