拓扑排序是求一个AOV网(顶点代表活动, 各条边表示活动之间的率先关系的有向图)中各活动的一个拓扑序列的运算, 可用于測试AOV

网络的可行性.

整个算法包含三步:

1.计算每一个顶点的入度, 存入InDegree数组中.

2.检查InDegree数组中顶点的入度, 将入度为零的顶点进栈.

3.不断从栈中弹出入度为0的顶点并输出, 并将该顶点为尾的全部邻接点的入度减1, 若此时某个邻接点的入度为0, 便领其进栈. 反复步骤

3, 直到栈为空时为止. 此时, 或者所有顶点都已列出, 或者因图中包括有向回路, 顶点未能所有列出.

实现代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
enum ResultCode { Underflow, Overflow, Success, Duplicate, NotPresent, Failure, HasCycle };
template <class T>
struct ENode
{
ENode() { nxtArc = NULL; }
ENode(int vertex, T weight, ENode *nxt) {
adjVex = vertex;
w = weight;
nxtArc = nxt;
}
int adjVex;
T w;
ENode *nxtArc;
/* data */
};
template <class T>
class Graph
{
public:
virtual ~Graph() {}
virtual ResultCode Insert(int u, int v, T &w) = 0;
virtual ResultCode Remove(int u, int v) = 0;
virtual bool Exist(int u, int v) const = 0;
/* data */
};
template <class T>
class LGraph: public Graph<T>
{
public:
LGraph(int mSize);
~LGraph();
ResultCode Insert(int u, int v, T &w);
ResultCode Remove(int u, int v);
bool Exist(int u, int v) const;
int Vertices() const { return n; }
void Output();
protected:
ENode<T> **a;
int n, e;
/* data */
};
template <class T>
void LGraph<T>::Output()
{
ENode<T> *q;
for(int i = 0; i < n; ++i) {
q = a[i];
while(q) {
cout << '(' << i << ' ' << q -> adjVex << ' ' << q -> w << ')';
q = q -> nxtArc;
}
cout << endl;
}
cout << endl << endl;
}
template <class T>
LGraph<T>::LGraph(int mSize)
{
n = mSize;
e = 0;
a = new ENode<T>*[n];
for(int i = 0; i < n; ++i)
a[i] = NULL;
}
template <class T>
LGraph<T>::~LGraph()
{
ENode<T> *p, *q;
for(int i = 0; i < n; ++i) {
p = a[i];
q = p;
while(p) {
p = p -> nxtArc;
delete q;
q = p;
}
}
delete []a;
}
template <class T>
bool LGraph<T>::Exist(int u, int v) const
{
if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return false;
ENode<T> *p = a[u];
while(p && p -> adjVex != v) p = p -> nxtArc;
if(!p) return false;
return true;
}
template <class T>
ResultCode LGraph<T>::Insert(int u, int v, T &w)
{
if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
if(Exist(u, v)) return Duplicate;
ENode<T> *p = new ENode<T>(v, w, a[u]);
a[u] = p;
e++;
return Success;
}
template <class T>
ResultCode LGraph<T>::Remove(int u, int v)
{
if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
ENode<T> *p = a[u], *q = NULL;
while(p && p -> adjVex != v) {
q = p;
p = p -> nxtArc;
}
if(!p) return NotPresent;
if(q) q -> nxtArc = p -> nxtArc;
else a[u] = p -> nxtArc;
delete p;
e--;
return Success;
}
template <class T>
class ExtLgraph: public LGraph<T>
{
public:
ExtLgraph(int mSize): LGraph<T>(mSize) {}
void TopoSort(int *order);
private:
void CallInDegree(int *InDegree);
/* data */
};
template <class T>
void ExtLgraph<T>::TopoSort(int *order)
{
int *InDegree = new int[LGraph<T>::n];
int top = -1; // 置栈顶指针为-1, 代表空栈
ENode<T> *p;
CallInDegree(InDegree); // 计算每一个顶点的入度
for(int i = 0; i < LGraph<T>::n; ++i)
if(!InDegree[i]) { // 图中入度为零的顶点进栈
InDegree[i] = top;
top = i;
}
for(int i = 0; i < LGraph<T>::n; ++i) { // 生成拓扑排序
if(top == -1) throw HasCycle; // 若堆栈为空, 说明图中存在有向环
else {
int j = top;
top = InDegree[top]; // 入度为0的顶点出栈
order[i] = j;
cout << j << ' ';
for(p = LGraph<T>::a[j]; p; p = p -> nxtArc) { // 检查以顶点j为尾的全部邻接点
int k = p -> adjVex; // 将j的出邻接点入度减1
InDegree[k]--;
if(!InDegree[k]) { // 顶点k入度为0时进栈
InDegree[k] = top;
top = k;
}
}
}
}
}
template <class T>
void ExtLgraph<T>::CallInDegree(int *InDegree)
{
for(int i = 0; i < LGraph<T>::n; ++i)
InDegree[i] = 0; // 初始化InDegree数组
for(int i = 0; i < LGraph<T>::n; ++i)
for(ENode<T> *p = LGraph<T>::a[i]; p; p = p -> nxtArc) // 检查以顶点i为尾的全部邻接点
InDegree[p -> adjVex]++; // 将顶点i的邻接点p -> adjVex的入度加1
}
int main(int argc, char const *argv[])
{
ExtLgraph<int> lg(9);
int w = 10; lg.Insert(0, 2, w); lg.Insert(0, 7, w);
lg.Insert(2, 3, w); lg.Insert(3, 5, w);
lg.Insert(3, 6, w); lg.Insert(4, 5, w);
lg.Insert(7, 8, w); lg.Insert(8, 6, w);
int *order = new int[9];
lg.TopoSort(order);
cout << endl;
delete []order;
return 0;
}

拓扑排序的实现_TopoSort的更多相关文章

  1. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  2. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  3. 【BZOJ-2938】病毒 Trie图 + 拓扑排序

    2938: [Poi2000]病毒 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 609  Solved: 318[Submit][Status][Di ...

  4. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  5. 图——拓扑排序(uva10305)

    John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...

  6. Java排序算法——拓扑排序

    package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...

  7. poj 3687(拓扑排序)

    http://poj.org/problem?id=3687 题意:有一些球他们都有各自的重量,而且每个球的重量都不相同,现在,要给这些球贴标签.如果这些球没有限定条件说是哪个比哪个轻的话,那么默认的 ...

  8. 拓扑排序 - 并查集 - Rank of Tetris

    Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球 ...

  9. *HDU1285 拓扑排序

    确定比赛名次 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

随机推荐

  1. Appscan的第一个测试请求就是提交MAC地址

    GET /AppScan_fingerprint/MAC_ADDRESS_真实的MAC地址.html HTTP/1.0 还好都是合法测试,否则情何以堪...

  2. hdu 5117 数学公式展开 + dp

    题目大意:有n个灯泡,m个按钮,(1 <= n, m <= 50),每个按钮和ki 个灯泡相关, 按下后,转换这些灯泡的状态,问你所有2^m的按下按钮的 组合中亮着的灯泡的数量的三次方的和 ...

  3. shell日志重定向到null

    用输出重定向符号> 即可,格式如下:shell命令 >/dev/null 若要将标准错误输出也一并重定向,如下:shell命令 >/dev/null 2>&1这样就不管 ...

  4. 找不到 libgtk-x11-2.0.so.0

    找不到 libgtk-x11-2.0.so.0 安装 yum groupinstall "Development Tools" yum install gtk+-devel gtk ...

  5. python毫秒级sleep

    Python中的sleep函数可以传小数进去,然后就可以进行毫秒级的延时了 # 例1:循环输出休眠1秒 import time i = 1 while i = 3: print i # 输出i i + ...

  6. Linux操作命令(六)

    本次实验将介绍 Linux 命令中 wc 和 grep 命令的用法. wc grep 1.wc wc命令是一个统计的工具,主要用来显示文件所包含的行.字和字节数. wc命令是word count的缩写 ...

  7. HRBUST 1313 火影忍者之~静音

    优先队列. 每次将$n$个人压入优先队列,取出$5$个,最后排序. #include<cstdio> #include<cstring> #include<cmath&g ...

  8. 【SpringMVC】一次处理项目中文乱码的经历

    一次处理项目中文乱码的经历 背景 今天把旧服务器上的项目转移到新服务器上,结果返回的json中的中文乱码了,觉得很奇怪,因为新服务器和旧服务器都是TX云,也不会有太大区别呀,于是乎开始了为期半天的蛋疼 ...

  9. UGUI的优点新UI系统三效率高效果好

    UGUI的优点新UI系统三效率高效果好 通过对批处理(batching).纹理图集(texture atlasing)和新的canvas组件的支持,新UI系统提供了一个经过优化的解决方案,使得开发者添 ...

  10. PMP CMM

    CMM和PMP是两个不同的概念域,是用来解决不同问题的.我们所说的CMM,准确的说应该是叫做能力成熟度模型,北京猴子说的软件能力成熟度模型实际上应该称为SW-CMM,是CMM的一个子集.PMP可以看做 ...