【TOJ 3600】Fibonacci II (对数+斐波那契通项式)
描述
2007年到来了。经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列
(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。
接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验zouyu说的是否正确。
输入
输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾。
输出
输出f[n]的前4个数字(若不足4个数字,就全部输出)。
样例输入
0
1
2
3
4
5
35
36
37
38
39
40
样例输出
0
1
1
2
3
5
9227
1493
2415
3908
6324
1023
思路:
假设给出一个数10234432,那么log10(10234432)=log10(1.0234432*10^7)=log10(1.0234432)+7。
log10(1.0234432)=0.010063744 即是 log10(10234432)的小数部分。
那么 10^0.010063744=1.023443198,取前4位1023即是答案!
为了方便计算,在此我预处理了前17个斐波那契数。
此题在运用对数的同时,还需要斐波那契数列的通项公式:
对该公式取10的对数
又由于 log10(1-((1-√5)/(1+√5))^n)在n无限增大时的极限为0,所以我们在写公式的时候可以省去这一项。
#include<bits/stdc++.h>
using namespace std;
int fib[];
int main()
{
int i,j,k,n;
fib[]=;
fib[]=;
for(i=;i<=;i++)
fib[i]=fib[i-]+fib[i-];
double t=(1.0+sqrt())*0.5,ans;
while(scanf("%d",&n)!=EOF)
{
if(n<=)
printf("%d\n",fib[n]);
else
{
ans=-0.5*log10(5.0)+n*1.0*log10(t);
ans=ans-floor(ans);
ans=pow(10.0,ans);
while(ans<)
ans*=;
printf("%d\n",int(ans));
}
}
return ;
}
【TOJ 3600】Fibonacci II (对数+斐波那契通项式)的更多相关文章
- HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】
Fibonacci Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Proble ...
- Fibonacci Nim(斐波那契尼姆)游戏
游戏描述: Fibonacci Nim是Nim游戏的变种,其规则为两名玩家从一堆硬币中交替移除硬币,第一步中,不允许玩家拿走所有硬币,也不允许不取,并且在每次后续移动中,移除的硬币数量最多可以是上一次 ...
- UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...
- Codeforces 446C - DZY Loves Fibonacci Numbers(斐波那契数列+线段树)
Codeforces 题目传送门 & 洛谷题目传送门 你可能会疑惑我为什么要写 *2400 的题的题解 首先一个很明显的想法是,看到斐波那契数列和 \(10^9+9\) 就想到通项公式,\(F ...
- HDU 3117 Fibonacci Numbers(围绕四个租赁斐波那契,通过计++乘坐高速动力矩阵)
HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵高速幂) ACM 题目地址:HDU 3117 Fibonacci Numbers 题意: 求第n个斐波那契数的 ...
- fibonacci数列-斐波那契数列-python编程
未完待续~ 了解fibonacci数列: 斐波纳契数列(Fibonacci Sequence),又称黄金分割数列. 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610 ...
- 从零开始学习PYTHON3讲义(六)for循环跟斐波那契数列
<从零开始PYTHON3>第六讲 几乎但凡接触过一点编程的人都知道for循环,在大多数语言的学习中,这也是第一个要学习的循环模式. 但是在Python中,我们把for循环放到了while循 ...
- 斐波那契数列的实现(C语言)
int fibonacci(int positon){ if(position==1||position==2){ return 1; } return fibonacci(position-1)+f ...
- 算法导论-求(Fibonacci)斐波那契数列算法对比
目录 1.斐波那契数列(Fibonacci)介绍 2.朴素递归算法(Naive recursive algorithm) 3.朴素递归平方算法(Naive recursive squaring) 4 ...
随机推荐
- eclipse遇到的异常
1. Widget disposed too early for part com.kompakar.ehealth.ui.emr.mstr.medicaldocumentaudit.Medical ...
- Java从入门到精通——数据库篇Mongo DB 导出,导入,备份
一.概述 本篇博客为大家讲述一下Mongo DB是如何导入导出数据,还有就是备份数据的. 在下面操作的时候需要把Mongo DB的服务端打开才能操作. 二.导出. MongoDB的导 ...
- CentOS 7运维管理笔记(5)----源代码安装Apache 2.4,搭建LAMP服务器
########################## 2016-07-07-Thu--20:34 补充 ##################### 编译安装OpenSSL笔记: 如果系统要使用 ...
- css 三角形的制作
参考网页: http://www.jb51.net/article/42513.htm 1 .设置宽高为0 2 .设置4条边框 3 .设置边框颜色border-color如下: border-colo ...
- Element和vue框架报错提示
上面报错提示Error in render function: "TypeError:Cannot read property '$options' of undefined" 就 ...
- ARC以及MRC中setter方法的差异
ARC以及MRC中setter方法的差异 有时候,你会需要重写setter或者getter方法,你知道么,ARC与MRC的setter方法是有着差异的呢. 先看下MRC下的setter方法: 在看下A ...
- [问题记录]libpomelo编译报错:ssize_t重定义
1. 时间:2015/01/16 描述:添加libpomelo到cocos2dx项目,报错如下图所示: 解决: 修改代码,源代码: #if !defined(_SSIZE_T_) && ...
- 《C++ Primer Plus》读书笔记之二—复合类型
二.第四章 复合类型 1.C-风格字符串:C-风格字符串具有一种特殊的性质:以空字符结尾,空字符被写成\0,其ASC||编码为0,用来标记字符串的结尾.例如: char dog[5]={'b','e ...
- Memory Leak Detection in C++
原文链接:http://www.linuxjournal.com/article/6556?page=0,0 An earlier article [“Memory Leak Detection in ...
- February 20 2017 Week 8 Monday
Behind every beautiful thing, there's some kind of pain. 美丽背后,必有努力. No pains, no gains, and sometime ...