逻辑回归:使用SGD(Stochastic Gradient Descent)进行大规模机器学习
请记住,一个重要的关键是建立一个成功的分类要仔细构成具体和简单的术语,因此,它可以由一个有限的回答你的问题预定的类别的列表中的目标变量。请注意,并非所有的功能输入的数据也同样有用,你必须选择的功能被用来作为预测指标变量仔细,你可能需要尝试多种组合,以发现哪些是有用的分类表现良好。记住,务实是非常重要的。有了这些想法,回想起到品酒的例子的目标你的机器的分类应该是帮助你到晚餐时间,不是为了帮助你做微妙的审美判断生活中的美好事物。
参考:http://en.wikipedia.org/wiki/Stochastic_gradient_descent
1 线性回归
了解逻辑回归之前先了解下线性回归:因变量和自变量之间存在线性关系。一般模型如下:

从一般模型可以看出Y和X(X1,X2,X3...)之间存在线性关系。线性回归的目的就是为了确定因变量和自变量的关系程度,换言之,就是求回归模型的参数。
2 逻辑回归
(1) why need it?
要说逻辑回归的优点,自然要先说下线性回归的缺点,主要有难以处理以下两个问题
a. 因变量Y如果不是数值型
b. 因变量与自变量不存在线性关系
(2) 逻辑回归的一般形式
P是概率,是某个事件发生的概率,处理类别属性,例如是否是男性,是否是色狼?
而且进行了logit变换。也就是说logit(P)与自变量之间存在线性关系,而p显然和X不存在线性关系。
那为什么是logit变换,不是XXX其他的变换,这里有一个前提假设:概率与自变量的关系往往是 S 型的曲线
(3)参数估计
模型有了,需要利用已知的样本来进行参数估计,最大似然估计用的比较多。mahout中用的是随机梯度下降法(SGD)。此处介绍下随机梯度下降法。
a. 梯度下降法
搜索寻优的一个过程,假定一个初始状态,然后不断更新,知道达到目标函数的极小值。其中
称为学习率,他决定梯度下降搜索的步长。算法流程如下:
其中W表示权重。
b. 随机梯度下降
sgd解决了梯度下降的两个问题: 收敛速度慢和陷入局部最优。修正部分是权值更新的方法有些许不同。
3 基于梯度下降的学习
对于一个简单的机器学习算法,每一个样例包含了一个(x,y)对,其中一个输入x和一个数值输出y。我们考虑损失函数,它描述了预测值
和实际值y之间的损失。预测值是我们选择从一函数族F中选择一个以w为参数的函数
的到的预测结果。
我们的目标是寻找这样的函数,能够在训练集中最小化平均损失函数
由于我们不知道数据的真实分布,所以我们通常使用
来代替
经验风险用来衡量训练集合的效果。期望风险E(f)描述了泛化(generation)的效果,预测未知样例的能力。
如果函数族F进行足够的限制(sufficiently restrictive),统计机器学习理论使用经验风险来代替期望风险。
3.1 梯度下降
我们经常使用梯度下降(GD)的方式来最小化期望风险,每一次迭代,基于更新权重w:
,
为学习率,如果选择恰当,初始值选择合适,这个算法能够满足线性的收敛。也就是:
,其中
表示残余误差(residual error)。
基于二阶梯度的比较出名的算法是牛顿法,牛顿法可以达到二次函数的收敛。如果代价函数是二次的,矩阵是确定的,那么这个算法可以一次迭代达到最优值。如果足够平滑的话,
。但是计算需要计算偏导hession矩阵,对于高维,时间和空间消耗都是非常大的,所以通常采用近似的算法,来避免直接计算hession矩阵,比如BFGS,L-BFGS。
3.2 随机梯度下降
SGD是一个重要的简化,每一次迭代中,梯度的估计并不是精确的计算,而是基于随机选取的一个样例
:
随机过程
依赖于每次迭代时随机选择的样例,尽管这个简化的过程引入了一些噪音,但是我们希望他的表现能够和GD的方式一样。
随机算法不需要记录哪些样例已经在前面的迭代过程中被访问过,有时候随机梯度下降能够直接优化期望风险,因为样例可能是随机从真正的分布中选取的。
随机梯度算法的收敛性要满足:
并且
二阶随机梯度下降:
这种方法并没有减少噪音,也不会对计算有太大改进。
3.3 随机梯度的一些例子
下面列了一些比较经典的机器学习算法的随机梯度:
逻辑回归:使用SGD(Stochastic Gradient Descent)进行大规模机器学习的更多相关文章
- 使用SGD(Stochastic Gradient Descent)进行大规模机器学习
原贴地址:http://fuliang.iteye.com/blog/1482002 其它参考资料:http://en.wikipedia.org/wiki/Stochastic_gradient_ ...
- 机器学习-随机梯度下降(Stochastic gradient descent)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?
FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...
- Stochastic Gradient Descent
一.从Multinomial Logistic模型说起 1.Multinomial Logistic 令为维输入向量; 为输出label;(一共k类); 为模型参数向量: Multinomial Lo ...
- 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...
- 基于baseline和stochastic gradient descent的个性化推荐系统
文章主要介绍的是koren 08年发的论文[1], 2.1 部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文 ...
- Stochastic Gradient Descent 随机梯度下降法-R实现
随机梯度下降法 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 批量梯度下降法在权值更新前对所有样本汇总 ...
- Stochastic Gradient Descent收敛判断及收敛速度的控制
要判断Stochastic Gradient Descent是否收敛,可以像Batch Gradient Descent一样打印出iteration的次数和Cost的函数关系图,然后判断曲线是否呈现下 ...
- 基于baseline、svd和stochastic gradient descent的个性化推荐系统
文章主要介绍的是koren 08年发的论文[1], 2.3部分内容(其余部分会陆续补充上来).koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文章目 ...
随机推荐
- Ubuntu----1
1. 安装ubuntu之后,你必须要做的事情, 引自:http://itsfoss.com/things-to-do-after-installing-ubuntu-13-04/ 但是对于国人来讲,墙 ...
- YII 表单验证规则
官方文档:http://www.yiichina.com/guide/form.model 类参考手册:http://www.yiichina.com/api/CValidatorhttp://www ...
- 小物件之select单选下拉列表
有时候在控制器中做了一个数组 然后需要在模板view中循环 同时还需要判断是否有选中的值,就会造成很多开始闭合标签 以前都是这样写 这样实在太繁琐了,不如封装一个小物件 封装函数如下: 代码如下: f ...
- 关于list、set、map的几点总结
用法: 1. 如果涉及到堆栈,队列等操作,应该考虑用List, 对于需要快速插入,删除元素,应该使用LinkedList, 如果需要快速随机访问元素,应该使用ArrayList.2. 如果程序在单线程 ...
- 有n个台阶,如果一次只能上1个或2个台阶,求一共有多少种上法
// n级台阶,求多少种跳法.cpp : Defines the entry point for the console application. // /* 思路: 如果只有一级台阶,n=1,很明显 ...
- java获得项目绝对路径
在jsp和class文件中调用的相对路径不同. 在jsp里,根目录是WebRoot 在class文件中,根目录是WebRoot/WEB-INF/classes 当然你也可以用System.getPro ...
- Android中配置JDK和SDK的环境变量
JDK环境变量的配置: 右击"计算机"或"我的电脑",选择"属性"-->"高级"或"高级系统设置&quo ...
- 3第一周课后练习·阅读计划(2)-使用指针来访问私有数据成员
/* * Copyright (c) 2015, 计算机科学学院,烟台大学 * All rights reserved. * 文件名:test.cpp * 作 靠:刘畅 * 完成日期:2015年 3 ...
- Html学习笔记4
<span style="font-size:18px;">超链接: 1 标签 语法: <a href="链接跳转后的地址 " >链接文 ...
- GDB-Dashboard-GDB可视化界面
项目地址 https://github.com/cyrus-and/gdb-dashboard 项目介绍 gdb-dashboard是一个gdb的可视化界面,可以通过web或者终端来现实可视化信息,支 ...