As rich as Crassus

题目链接

题目描述

Crassus, the richest man in the world, invested some of his money with the Very Legitimate International Bank. The Bank offered a remarkable interest rate. They promised that given an initial investment of x, the balance at the beginning of the nth year would be xn (counting the first year as year 1).

At the beginning of the 3rd year, there is a problem. It turns out that this investment opportunity is too good to be true, and it is actually a fraud. The Bank has spent all the money, and the directors have disappeared. Since Crassus is very rich, the Government decides to help him. They will pay him back his initial deposit out of taxpayers’ money.

The Bank has lost all records of Crassus’ original deposit, but does have information about what Crassus’ current deposit value should be. This information is stored on 3 separate computers. Unfortunately, each computer only has a limited amount of memory, and is also very badly designed, so each computer stores integers modulo Ni, for i = 1,2,3. Though these values are all large enough to correctly store the initial value x, Crassus now has so much money ‘invested’ with the Bank that the computers don’t have enough memory to store it correctly. I.e. x3>Ni for all i = 1,2,3.

As the government official in charge of giving Crassus his initial deposit back, you must find the value of the original x that he invested. You know the numbers N1,N2,N3, and the value x3 mod Ni for all i. You also read in the documentation for the computers that the numbers N1,N2,N3, have the property that if p is a prime number and p divides Ni, then p does not divide Nj for all i ≠ j.

输入

The first line contains a single number T indicating the number of test cases (0 < T ≤ 10).

The next 2T lines of input come in pairs as follows. The first line of each pair contains three numbers N1,N2,N3, separated by spaces (0 < Ni < 231 for all i).

The second line of each pair contains the values x3 mod Ni for each i, again separated by spaces.

输出

The value of x for each test case, written out in full, each on a new line.

样例输入

2
6 11 19
5 4 11
25 36 7
16 0 6

样例输出

5
6

题解

扩展剩余定理 板子来自传送门

代码

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define scac(x) scanf("%c",&x)
#define sca(x) scanf("%d",&x)
#define sca2(x,y) scanf("%d%d",&x,&y)
#define sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define scl(x) scanf("%lld",&x)
#define scl2(x,y) scanf("%lld%lld",&x,&y)
#define scl3(x,y,z) scanf("%lld%lld%lld",&x,&y,&z)
#define pri(x) printf("%d\n",x)
#define pri2(x,y) printf("%d %d\n",x,y)
#define pri3(x,y,z) printf("%d %d %d\n",x,y,z)
#define prl(x) printf("%lld\n",x)
#define prl2(x,y) printf("%lld %lld\n",x,y)
#define prl3(x,y,z) printf("%lld %lld %lld\n",x,y,z)
#define mst(x,y) memset(x,y,sizeof(x))
#define ll long long
#define LL long long
#define pb push_back
#define mp make_pair
#define P pair<double,double>
#define PLL pair<ll,ll>
#define PI acos(1.0)
#define eps 1e-6
#define inf 1e17
#define mod 1e9+7
#define INF 0x3f3f3f3f
#define N 1005
const int maxn = 5000005;
ll m[105],a[105],n=3;
LL exgcd(LL a,LL b,LL &x,LL &y){
if(!b){x=1,y=0;return a;}
LL re=exgcd(b,a%b,x,y),tmp=x;
x=y,y=tmp-(a/b)*y;
return re;
} LL work(){
LL M=m[1],A=a[1],t,d,x,y;int i;
for(i=2;i<=n;i++){
d=exgcd(M,m[i],x,y);
if((a[i]-A)%d) return -1;
x*=(a[i]-A)/d,t=m[i]/d,x=(x%t+t)%t;
A=M*x+A,M=M/d*m[i],A%=M;
}
A=(A%M+M)%M;
return A;
} int main()
{
int t;
sca(t);
while(t--)
{
rep(i,1,n+1) scl(m[i]);
rep(i,1,n+1) scl(a[i]);
ll ans = work();
if(ans==-1)
printf("-1\n");
else
{
if(!ans)
printf("0\n");
else
{
ll tmp = pow(ans,1.0/3.0);
if(tmp * tmp * tmp < ans)
printf("%lld\n", tmp + 1);
else
printf("%lld\n", tmp);
}
}
}
return 0;
}

upc组队赛14 As rich as Crassus【扩展中国剩余定理】的更多相关文章

  1. 扩展中国剩余定理 (exCRT) 的证明与练习

    原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...

  2. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  3. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  4. P4777 【模板】扩展中国剩余定理(EXCRT)

    思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...

  5. P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT

    EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...

  6. [poj2891]Strange Way to Express Integers(扩展中国剩余定理)

    题意:求解一般模线性同余方程组 解题关键:扩展中国剩余定理求解.两两求解. $\left\{ {\begin{array}{*{20}{l}}{x = {r_1}\,\bmod \,{m_1}}\\{ ...

  7. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  8. poj 2891 Strange Way to Express Integers【扩展中国剩余定理】

    扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...

  9. hdu 1573 X问题【扩展中国剩余定理】

    扩展中国剩余定理的板子,合并完之后算一下范围内能取几个值即可(记得去掉0) #include<iostream> #include<cstdio> #include<cm ...

随机推荐

  1. Codeforces 1119D(差分)

    题面 传送门 分析 先考虑\(O(nk)\)的做法,先按s从小到大排序,每个串的数显然形成了n个连续区间\([s_i+l,s_i+r]\),且这些区间的左端点升序排列,然后把区间合并就可以知道有多少个 ...

  2. luogu P3657 (NOIP2017) 跳房子(二分+DP+单调队列)

    题面 传送门 分析 显然答案有单调性,可以二分答案,设当前二分值为g,根据题意我们可以求出跳跃长度的范围[l,r] 考虑DP 子状态: dp[i]表示跳到第i个点时的最大和 状态转移方程 \(dp[i ...

  3. 针对三星Exynos CPU Root漏洞

    因为系统为了保护这些符号地址泄露,而用的一种保护手段,从而使除root用户外的普通用户不能直接查看符号地址: 原因在于内核文件kallsyms.c中的显示符号地址命令中做了如下限制: seq_prin ...

  4. python最新字符串学习总结

    names="hello word" len() title() formate 格式化 split join find() replace() startswith() ends ...

  5. 在vue中运用mt-loadmore 实现上拉加载,下拉刷新(完整源码)

    <template> <div class="serverList"> <ul class="scrollModeBox" :st ...

  6. JS面向对象——组合使用构造函数模型与原型模型

    该模型为创建自定义类型最常用的方式. <!DOCTYPE html> <html> <head> <title>组合使用构造函数模型和原型模型</ ...

  7. Python元类之由浅入深

    前言 ​ 元类属于python面向对象编程的深层次的魔法,非常重要,它使我们可以更好的掌控类从创建到消亡的整个生命周期过程.很多框架的源码中都使用到了元类.例如 Django Framework 中的 ...

  8. C Primer Plus 学习 第四章

    字符串与格式化输入/输出 函数 strlen() 关键字 const 利用#define 和 const创建符号常量 #include <stdio.h> #include <str ...

  9. 《TED演讲的秘密》:TED组织者总结的演讲技巧集锦。三星推荐。

    对演讲感兴趣的可以看看.对TED内容感兴趣的也可以翻翻,书中有不少作者认为演讲技巧比较经典(一般来说内容上也有特色)的TED演讲的二维码.三星推荐.http://t.cn/RvFStu7

  10. ltp-ddt smp_basic

    SMP_S_FUNC_DUAL_CORE source functions.sh; cmd="stress-ng --matrix 4 -t 10s --perf --matrix-size ...