基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。

 
Input
输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9)
Output
输出一个数K,满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。
Input示例
2 3
Output示例
2

代码

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
ll x,y;
ll exgcd(ll a,ll b){
if(b==){
x=;y=;return a;
}
int g=exgcd(b,a%b);
int t=x;
x=y;
y=t-a/b*y;
return g;
} int main(){
ll a,b,c;
scanf("%lld%lld",&a,&b);
int g=exgcd(a,b);
printf("%lld\n",(x%b+b)%b);
return ;
}

无话可说,QAQ

51Nod 1256 乘法逆元 Label:exgcd的更多相关文章

  1. [51nod 1256] 乘法逆元 - exgcd

    给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Solution 用 EXGCD 求 ...

  2. 51Nod 1256 乘法逆元

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 给出2个数M和N(M < N),且M与N互质,找 ...

  3. 51Nod 1256 乘法逆元 扩展欧几里得

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = ...

  4. (拓展欧几里得)51NOD 1256 乘法逆元

    给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的.   输入 输入2个数M, N中间用空 ...

  5. 51 Nod 1256 乘法逆元(数论:拓展欧几里得)

    1256 乘法逆元  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K ...

  6. 51nod 125乘法逆元 (扩展欧几里得)

    给出2个数M和N(M < N),且M与N互质.找出一个数K满足0 < K < N且K * M % N = 1,假设有多个满足条件的.输出最小的. Input 输入2个数M, N中间用 ...

  7. 51nod1256乘法逆元

    1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < ...

  8. 51nod--1256 乘法逆元 (扩展欧几里得)

    题目: 1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < ...

  9. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

随机推荐

  1. 数据结构和算法 – 9.二叉树和二叉查找树

      9.1.树的定义   9.2.二叉树 人们把每个节点最多拥有不超过两个子节点的树定义为二叉树.由于限制子节点的数量为 2,人们可以为插入数据.删除数据.以及在二叉树中查找数据编写有效的程序了. 在 ...

  2. jQuery 操作复选框(checkbox) attr checked不起作用

    参考资料 http://www.paobuke.com/develop/javascript/pbk849.html   这天用到jQuery功能,想实现一个简单的复选框动态全选或全不选,结果测试发现 ...

  3. 与你相遇好幸运,Tippecanoe在Centos下の安装

    全新的CentOS 7 x86_64 安装编译工具 yum install -y gcc automake autoconf libtool make yum insyall -y gcc gcc-c ...

  4. c/s模式 (C#)下Ftp的多文件上传及其上传进度

    因为项目要求,制作的一个多文件上传,并显示进度条一段代码(vs2005环境).(只为粗略的实现,代码并不规范) 当多个文件上传的时候,需要依次队列形式一个个上传,当上传某个文件的时候,锁定进程,上传完 ...

  5. Centos6.5里安装Erlang 并安装riak

    一.Erlang安装: 1 首先进入www.erlang.org 下载页面,下载otp_src_17.5.tar.gz. IT网,http://www.it.net.cn 2 解压缩:tar -xzv ...

  6. hdu 1517 博弈 **

    博弈题: 题意:2 个人玩游戏,从 1 开始,轮流对数进行累乘,直到超过一个指定的值. 解题思路:如果输入是 2 ~ 9 ,因为Stan 是先手,所以Stan 必胜如果输入是 10~18 ,因为Oll ...

  7. 多进程程序设计,王明学learn

    多进程程序设计 一.函数学习 1.1 创建进程fork 1.1.1 函数原形 pid_t fork(void); 1.1.2 函数功能 创建一个子进程 1.1.3 所属头文件 <unistd.h ...

  8. 第二篇:SOUI源码的获取及编译

    源代码的获取 SOUI的源码采用SVN管理. SVN:http://code.taobao.org/svn/soui2 这里主要包含两个目录:trunk 及 third-part. trunk目录保存 ...

  9. 虚拟机安卓APK

    输入命令,可以直接把桌面上的程序直接拖过来. 注意第二条命令,有"-r".

  10. Reading and Writing CSV Files in C#

    Introduction A common requirement is to have applications share data with other programs. Although t ...