机器学习实战-边学边读python代码(5)
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
注意:
p1Vect = log(p1Num/p1Denom)
p0Vect = log(p0Num/p0Denom)
>>> p0V
array([ 0.04166667, 0.04166667, 0.04166667, 0. , 0. ,
.
.
0.04166667, 0. , 0.04166667, 0. , 0.04166667,
0.04166667, 0.125 ])
>>> p1V
array([ 0. , 0. , 0. , 0.05263158, 0.05263158,
.
.
0. , 0.15789474, 0. , 0.05263158, 0. ,
0. , 0. ])
p(w0,w1,w2..wN|ci) = p(w0|ci)p(w1|ci)p(w2|ci)...p(wN|ci),
在本例中,ci分为侮辱性和非侮辱性两个类别,而w0,w1,w2..wN为单词向量(文档中所有单词的汇总),p0V和p1V是由训练文档计算出来的,如果文档为侮辱性文档,统计文档中各个词语在单词向量中出现情况,计算出概率向量p0V,同样计算出p1V.
贝叶斯定理如下:
p(ci|w)
= p(w|ci)p(ci)/p(w)
=p(w0,w1,w2..wN|ci)p(ci)/p(w)
=p(w0|ci)p(w1|ci)p(w2|ci)..p(wN|ci)p(ci)/p(w)
计算一个特定的文档w属于c0(侮辱性文档)或者c1(非侮辱性文档),统计这篇文档中各个单词在两个不同类别中的出现概率,由贝叶斯公式进行量化,也就是把特定文档中的每个单词在p0V或者p1V中找到对应的单词概率,把这些概率相乘,即p(w0|ci)p(w1|ci)p(w2|ci)..p(wN|ci),再乘以p(ci),最后的结果得出两个概率值,概率大的即为特定文档最后的类别。
机器学习实战-边学边读python代码(5)的更多相关文章
- 机器学习实战-边学边读python代码(4)
程序2-4 分类器针对约会网站的测试代码(4) def datingClassTest():hoRatio = 0.10 //将文件读入内存矩阵datingDataMat,datingLabels = ...
- 机器学习实战-边学边读python代码(3)
程序清单2-3 归一化特征值: def autoNorm(dataSet): /* >>> barray([[ 1., 2., 3.], [ 2., 3., 4.], [ 10., ...
- 《机器学习实战》之一:knn(python代码)
数据 标称型和数值型 算法 归一化处理:防止数值较大的特征对距离产生较大影响 计算欧式距离:测试样本与训练集 排序:选取前k个距离,统计频数(出现次数)最多的类别 def classify0(inX, ...
- 《机器学习实战》——k-近邻算法Python实现问题记录(转载)
py2.7 : <机器学习实战> k-近邻算法 11.19 更新完毕 原文链接 <机器学习实战>第二章k-近邻算法,自己实现时遇到的问题,以及解决方法.做个记录. 1.写一个k ...
- 【机器学习实战】Machine Learning in Action 代码 视频 项目案例
MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apa ...
- 《机器学习实战》AdaBoost算法(手稿+代码)
Adaboost:多个弱分类器组成一个强分类器,按照每个弱分类器的作用大小给予不同的权重 一.Adaboost理论部分 1.1 adaboost运行过程 注释:算法是利用指数函数降低误差,运行过程通过 ...
- Python 机器学习实战 —— 监督学习(下)
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是 ...
- Python 机器学习实战 —— 无监督学习(上)
前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾 ...
- Python 机器学习实战 —— 无监督学习(下)
前言 在上篇< Python 机器学习实战 -- 无监督学习(上)>介绍了数据集变换中最常见的 PCA 主成分分析.NMF 非负矩阵分解等无监督模型,举例说明使用使用非监督模型对多维度特征 ...
随机推荐
- 李洪强iOS经典面试题上
李洪强iOS经典面试题上 1. 风格纠错题 修改完的代码: 修改方法有很多种,现给出一种做示例: // .h文件 // http://weibo.com/luohanchenyilong/ / ...
- [zt]OpenCV2.1.0的安装
下载和安装 OpenCV 2.1.0 2.添加库文件:打开VS 2008,选择菜单:Tools->options->Projects and Solutions >VC++ Dire ...
- Hadoop.2.x_高级应用_二次排序及MapReduce端join
一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 == ...
- winform把图片存储到数据库
1.先在Form中放一个PictureBox控件,再放三个按钮. 2.双击打开按钮,在里面写如下代码: OpenFileDialog open1 = new OpenFileDialog(); Dia ...
- Oracle常用命令(持续更新)
--1.解锁用户 alter user 用户名 account unlock; --2.开启最小补充日志记录(执行的DML操作会被记录下来) alter database add supplemen ...
- param STRING $username 要检查的用户名
检查用户名是否符合规定 两位以上的字母,数字,或者下划线,代码如下: php;auto-links:false;">/** * 检查用户名是否符合规定 * * @param STRIN ...
- Java数据库连接池
转载过来的,最近在做一个小网站,准备使用这种方法. Java jdbc数据库连接池总结! 1. 引言 近年来,随着Internet/Intranet建网技术的飞速发展和在世界范围内的迅速普及, ...
- 【iCore3 双核心板】例程三十三:SD_IAP_ARM实验——更新升级STM32
实验指导书及代码包下载: http://pan.baidu.com/s/1jHmvQfk iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...
- momentjs 求小时差异
momentjs 使用 var now1 = moment( moment().unix()*1000); //获取unix时间戳 需要*1000 var befor_time = moment(1 ...
- 关于WPF程序只运行一个实例的方法
找到的方法有两种: 1)http://www.cnblogs.com/liuyazhou/archive/2009/11/02/1594364.html 2)http://codereview.sta ...