codeforces118D. Caesar's Legions
地址:http://www.codeforces.com/problemset/problem/118/D
题目:
Gaius Julius Caesar, a famous general, loved to line up his soldiers. Overall the army had n1 footmen and n2 horsemen. Caesar thought that an arrangement is not beautiful if somewhere in the line there are strictly more that k1 footmen standing successively one after another, or there are strictly more than k2 horsemen standing successively one after another. Find the number of beautifularrangements of the soldiers.
Note that all n1 + n2 warriors should be present at each arrangement. All footmen are considered indistinguishable among themselves. Similarly, all horsemen are considered indistinguishable among themselves.
The only line contains four space-separated integers n1, n2, k1, k2 (1 ≤ n1, n2 ≤ 100, 1 ≤ k1, k2 ≤ 10) which represent how many footmen and horsemen there are and the largest acceptable number of footmen and horsemen standing in succession, correspondingly.
Print the number of beautiful arrangements of the army modulo 100000000 (108). That is, print the number of such ways to line up the soldiers, that no more than k1 footmen stand successively, and no more than k2 horsemen stand successively.
2 1 1 10
1
2 3 1 2
5
2 4 1 1
0
Let's mark a footman as 1, and a horseman as 2.
In the first sample the only beautiful line-up is: 121
In the second sample 5 beautiful line-ups exist: 12122, 12212, 21212, 21221, 22121
思路:好吧,这题又没自己做出来,看了别人的代码后才会的;
开始我用dp[i][0]和dp[i][1]来表示前i个人中以0或1结尾的排列方式有多少中,然后。。。。就没有然后了,写不下去了,因为前i个人中,我统计不出步兵和骑兵各有多少人。
。别人的做法:我只能说构思很巧!,算0结尾的用以1结尾的来计算!
使用状态dp【i】【j】【k】,i,j:步兵,骑兵个数 k:0是步兵,1是骑兵
状态方程:for(int k = 1; k <= min(i,k1); k++)
dp[i][j][0] = (dp[i][j][0] + dp[i-k][j][1])%MOD;
for(int k = 1; k <= min(j,k2); k++)
dp[i][j][1] = (dp[i][j][1] + dp[i][j-k][0])%MOD;
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <queue>
#include <stack>
#include <map>
#include <vector> #define PI acos((double)-1)
#define E exp(double(1))
using namespace std; int dp[][][];
int main (void)
{
int n1,n2,k1,k2;
cin>>n1>>n2>>k1>>k2;
memset(dp,,sizeof(dp));
for(int i=;i<= min(n1,k1);i++)
dp[i][][] = ;
for(int i = ;i<=min(n2,k2);i++)
dp[][i][]=;
for(int i = ;i<=n1;i++)
for(int j = ;j<=n2;j++)
{
for(int k=;k<=min(i,k1);k++)
dp[i][j][]=(dp[i][j][]+dp[i-k][j][])%;
for(int k=;k<=min(j,k2);k++)
dp[i][j][]=(dp[i][j][]+dp[i][j-k][])%;
}
cout<<(dp[n1][n2][]+dp[n1][n2][])%<<endl;
return ;
}
codeforces118D. Caesar's Legions的更多相关文章
- Codeforces118D Caesar's Legions(DP)
题目 Source http://codeforces.com/problemset/problem/118/D Description Gaius Julius Caesar, a famous g ...
- Caesar's Legions(三维dp)
Caesar's Legions Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u S ...
- Caesar's Legions(CodeForces-118D) 【DP】
题目链接:https://vjudge.net/problem/CodeForces-118D 题意:有n1名步兵和n2名骑兵,现在要将他们排成一列,并且最多连续k1名步兵站在一起,最多连续k2名骑兵 ...
- Codeforces 118 D. Caesar's Legions (dp)
题目链接:http://codeforces.com/contest/118/problem/D 有n个步兵和m个骑兵要排成一排,其中连续的步兵不能超过k1个,连续的骑兵不能超过k2个. dp[i][ ...
- D. Caesar's Legions 背包Dp 递推DP
http://codeforces.com/problemset/problem/118/D 设dp[i][j][k1][k2] 表示,放了i个1,放了j个2,而且1的连续个数是k1,2的连续个数是k ...
- 【dp】D. Caesar's Legions
https://www.bnuoj.com/v3/contest_show.php?cid=9146#problem/D [题意]给定n1个A,n2个B,排成一排,要求A最多能连续k1个紧挨着,B最多 ...
- 【Codeforces 118B】Caesar's Legions
[链接] 我是链接,点我呀:) [题意] 序列中不能连续出现k1个以上的1以及不能连续出现k2个以上的2,然后一共有n1个1以及n2和2,要求这n1+n2个数字都出现. 问序列有多少种可能. [题解] ...
- [CF118D]Caesar's Legions 题解
题意简述 一个01序列由\(n_1\)个0和\(n_2\)个1组成,求最长连续0串长度不超过\(k_1\),最长连续1串长度不超过\(k_2\)的序列的方案总数 题解 状态 方案总数 变量 已经取了i ...
- D. Caesar's Legions
\(状态很容易设计\) \(设dp[i][j][u][v]表示放了i个1兵种和j个2兵种\) \(然后u不会0说明末尾放了连续u个1兵种,v不为0说明末尾放了连续v个2兵种\) #include &l ...
随机推荐
- RT-Thread入门和模拟器的配置生成
RT-Thread是一个国产开源的实时操作系统,支持MCU多,外设丰富.值得学习 下载地址:http://www.rt-thread.org/page/31.html ,解压可以得到一下目录结构:|- ...
- SAP ALV内嵌(In-place)Excel的问与答
1.问题:点击ALV工具栏的"Excel"图标后,出现空白的内嵌Excel界面,无法正常显示报表数据.可按以下思路解决:(1)检查Excel中的宏安全设置选项.访问方法:启动Exc ...
- spring-hellow word
在大三的时候开了一门JAVAEE SSH框架,属于软件方向选修课程,虽然本人是搞硬件的,但是也选了这么课程,因为我在想有一天物联网也会走上大门户的,所以果断去蹭课了,时至今日,重新拾起来, ...
- Sharepoint学习笔记—习题系列--70-576习题解析 -(Q63-Q65)
Question 63You are designing a SharePoint 2010 implementation that will be used by a company with a ...
- CATransform3D方法汇总
CATransform3D三维变换 struct CATransform3D { CGFloat m11, m12, m13, m14; CGFloat m21, m22, m23, m24; CGF ...
- 史上最详细“截图”搭建Hexo博客——For Windows
http://angelen.me/2015/01/23/2015-01-23-%E5%8F%B2%E4%B8%8A%E6%9C%80%E8%AF%A6%E7%BB%86%E2%80%9C%E6%88 ...
- VS2013崩溃,无法打开项目的解决方案
最近遇到VS2013,在打开解决方案时,报如下错误: “未找到与约束 ContractName Microsoft.Internal.VisualStudio.PlatformUI.ISolution ...
- vsftpd 配置详解
1.默认配置: 1>允许匿名用户和本地用户登陆. anonymous_enable=YES local_enable=YES 2>匿名用户使用的登陆名为ftp或anonymous,口令为空 ...
- 优化SQLServer——表和分区索引
概念: 简单地说,分区是将大型的对象(如表)分成更小的且易于管理的小块.分区的基本单位是行,需要注意的是与分区视图不同的地方时,分区必须位于同一个数据库内. 分区的原因: 对于非 ...
- SqlServer链接MySql操作步骤
Sql Server版本 2008R2 1.从MySQL网站下载最新的MySQL ODBC驱动:http://www.mysql.com/downloads/connector/odbc/,我下载的版 ...