【LG4609】[FJOI2016]建筑师

题面

洛谷

题解

(图片来源于网络)

我们将每个柱子和他右边的省略号看作一个集合

则图中共有\(a+b-2\)个集合

而原来的元素中有\(n-1\)个(除去最后一个)

考虑第一类斯特林数的意义:

从\(n\)个元素选出\(m\)个有序圆圈的方案数

我们将圆圈从中间最大处剪开则可以满足要求

则我们有\(s(n-1,a+b-2)\)种选法

因为要保证从左看有\(a\)个

所以要乘上\(C(a+b-2,a-1)\)

\[\therefore Ans=C(a+b-2,a-1)\centerdot s(n-1,a+b-2)
\]

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (ch != '-' && (ch > '9' || ch < '0')) ch = getchar();
if (ch == '-') w = -1 , ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return w * data;
}
#define M 1000000007
#define MAX_N 50005
#define MAX_A 105
int N, A, B;
int C[MAX_A * 2][MAX_A * 2], S[MAX_N][MAX_A * 2]; int main () {
for (int i = 0; i <= 200; i++) S[i][i] = 1;
for (int i = 2; i < 50000; i++)
for (int j = 1; j <= min(i, 200); j++)
S[i][j] = (1ll * (i - 1) * S[i - 1][j] % M + S[i - 1][j - 1]) % M;
for (int i = 0; i <= 200; i++) C[i][i] = C[i][0] = 1;
for (int i = 1; i <= 200; i++)
for (int j = 1; j < i; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % M;
int T = gi();
while (T--) {
N = gi(), A = gi(), B = gi();
printf("%d\n", 1ll * S[N - 1][A + B - 2] * C[A + B - 2][A - 1] % M);
}
return 0;
}

【LG4609】[FJOI2016]建筑师的更多相关文章

  1. [洛谷P4609] [FJOI2016]建筑师

    洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...

  2. Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues

    考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...

  3. [FJOI2016]建筑师

    题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...

  4. Luogu4609 FJOI2016 建筑师 第一类斯特林数

    题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...

  5. Luogu4609 FJOI2016建筑师(斯特林数)

    显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...

  6. P4609 [FJOI2016]建筑师

    思路 裸的第一类斯特林数,思路和CF960G相同 预处理组合数和第一类斯特林数回答即可 代码 #include <cstdio> #include <cstring> #inc ...

  7. 洛谷 P4609: [FJOI2016] 建筑师

    本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...

  8. [Luogu4609][FJOI2016]建筑师

    luogu description 一个\(1...n\)的排列,其前缀最大值有\(A\)个,后缀最大值有\(B\)个,求满足要求的排列数. 一个位置\(i\)满足前缀最大当且仅当不存在\(j< ...

  9. [FJOI2016]建筑师 斯特林数

    早期作品,不喜轻喷. LG传送门 组合数与斯特林数的基本应用. 组合数 大家应该都熟悉它的表达式,但我们这里使用它的递推式会更加方便,下面推导组合数的递推式.设\(\binom{n}{m}\)表示在\ ...

随机推荐

  1. 【[HNOI2008]GT考试】

    我又来复习\(kmp\)了 其实这道题主要是一个矩阵乘法,但是\(kmp\)在其中也有着非常重要的作用 我们可以这样定义状态\(dp[i][j]\)表示文本串进行到了\(i\)位置,同时文本串在最后和 ...

  2. Django中模型(五)

    Django中模型(五) 六.模型查询 1.概述 查询集,表示从数据库获取的对象集合. 过滤器就是一个函数,基于所给的参数限制查询集结果.查询集可以有多个过滤器. 从sql角度来说,查询集合等价于se ...

  3. MAC下常用命令的中文帮助文档(man) 出现错误

    MacdeMacBook-Pro:Desktop mac$ tar -xf manpages-zh-1.5.2.tar.bz2 MacdeMacBook-Pro:~ root# cd /Users/m ...

  4. 指定Android adb的启动端口

    串口执行: setprop service.adb.tcp.port stop adbd start adbd 一般机器默认是5555为adb端口,但是今天遇到的一台机器以5037为默认端口,开发机器 ...

  5. 翻译 TI SerialBLEbridge V 1.4.1

    原文地址:http://processors.wiki.ti.com/index.php/SerialBLEbridge_V_1.4.1 Sample App Overview This page d ...

  6. ASP.NET MVC 自动模型验证

    经常看到这个代码 在controller 中写入验证模型,每个需要验证的action 都写-.. ,就问你烦不烦~ 可以利用 ASP.NET MVC 的 action 拦截机制 自动处理. 1 新建验 ...

  7. C#中HttpWebRequest的用法详解(转载)

    1.HttpWebRequest和HttpWebResponse类是用于发送和接收HTTP数据的最好选择.2.命名空间:System.Net3.HttpWebRequest对象不是利用new关键字创建 ...

  8. EF结合SqlBulkCopy实现高效的批量数据插入 |EF插件EntityFramework.Extended实现批量更新和删除

    原文链接:http://blog.csdn.net/fanbin168/article/details/51485969   批量插入 (17597条数据批量插入耗时1.7秒)   using Sys ...

  9. shell习题第3题:统计内存大小

    [题目要求] 写一个脚本计算一下linux系统所有进程占用内存的大小的和 [核心要点] ps命令用法 for循环 加法运算 [脚本] #!/bin/bash for n in `ps aux | gr ...

  10. VirtualBox + CentOS详细安装教程

    一.前期工作准备 电脑虚拟化开启(必要工作)大致流程: a.电脑开机时长按F12(F10)进入BIOS界面; b.依次选择Configuratio > Intel Virtual Technol ...