【LG4609】[FJOI2016]建筑师

题面

洛谷

题解

(图片来源于网络)

我们将每个柱子和他右边的省略号看作一个集合

则图中共有\(a+b-2\)个集合

而原来的元素中有\(n-1\)个(除去最后一个)

考虑第一类斯特林数的意义:

从\(n\)个元素选出\(m\)个有序圆圈的方案数

我们将圆圈从中间最大处剪开则可以满足要求

则我们有\(s(n-1,a+b-2)\)种选法

因为要保证从左看有\(a\)个

所以要乘上\(C(a+b-2,a-1)\)

\[\therefore Ans=C(a+b-2,a-1)\centerdot s(n-1,a+b-2)
\]

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (ch != '-' && (ch > '9' || ch < '0')) ch = getchar();
if (ch == '-') w = -1 , ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return w * data;
}
#define M 1000000007
#define MAX_N 50005
#define MAX_A 105
int N, A, B;
int C[MAX_A * 2][MAX_A * 2], S[MAX_N][MAX_A * 2]; int main () {
for (int i = 0; i <= 200; i++) S[i][i] = 1;
for (int i = 2; i < 50000; i++)
for (int j = 1; j <= min(i, 200); j++)
S[i][j] = (1ll * (i - 1) * S[i - 1][j] % M + S[i - 1][j - 1]) % M;
for (int i = 0; i <= 200; i++) C[i][i] = C[i][0] = 1;
for (int i = 1; i <= 200; i++)
for (int j = 1; j < i; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % M;
int T = gi();
while (T--) {
N = gi(), A = gi(), B = gi();
printf("%d\n", 1ll * S[N - 1][A + B - 2] * C[A + B - 2][A - 1] % M);
}
return 0;
}

【LG4609】[FJOI2016]建筑师的更多相关文章

  1. [洛谷P4609] [FJOI2016]建筑师

    洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...

  2. Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues

    考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...

  3. [FJOI2016]建筑师

    题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...

  4. Luogu4609 FJOI2016 建筑师 第一类斯特林数

    题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...

  5. Luogu4609 FJOI2016建筑师(斯特林数)

    显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...

  6. P4609 [FJOI2016]建筑师

    思路 裸的第一类斯特林数,思路和CF960G相同 预处理组合数和第一类斯特林数回答即可 代码 #include <cstdio> #include <cstring> #inc ...

  7. 洛谷 P4609: [FJOI2016] 建筑师

    本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...

  8. [Luogu4609][FJOI2016]建筑师

    luogu description 一个\(1...n\)的排列,其前缀最大值有\(A\)个,后缀最大值有\(B\)个,求满足要求的排列数. 一个位置\(i\)满足前缀最大当且仅当不存在\(j< ...

  9. [FJOI2016]建筑师 斯特林数

    早期作品,不喜轻喷. LG传送门 组合数与斯特林数的基本应用. 组合数 大家应该都熟悉它的表达式,但我们这里使用它的递推式会更加方便,下面推导组合数的递推式.设\(\binom{n}{m}\)表示在\ ...

随机推荐

  1. BZOJ 1012 最大数maxnumber 线段树

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1012 题目大意: 见链接 思路: 直接用线段树模拟一下就可以了. #include&l ...

  2. web-ctf随机数安全

    rand() 函数在产生随机数的时候没有调用 srand(),则产生的随机数是有规律可询的. 产生的随机数可以用下面这个公式预测 : state[i] = state[i-3] + state[i-3 ...

  3. @PostConstruct与@PreDestroy讲解及实例

    关于在spring  容器初始化 bean 和销毁前所做的操作定义方式有三种: 第一种:通过@PostConstruct 和 @PreDestroy 方法 实现初始化后和销毁bean之前进行的操作 第 ...

  4. 快速排序及STL中的sort算法

    快速排序基本思想是,对待排序序列进行划分(Partition),一次划分,选择一个元素作为枢轴,然后将所有比枢轴小的元素放到枢轴的左边,将比枢轴大的元素放到枢轴的右边.然后对该枢轴划分的左右子序列分别 ...

  5. SpringMVC转发页面405错误

    需要在该方法前加上:@ResponseBody注解 加上这个注解后可能在转发页面的时候出现问题,则需要在方法的参数中增加HttpServletRequest 和HttpServletResponse参 ...

  6. 使用supervior 监控 elasticsearch 进程

    elasticsearch引擎在使用中可能会出现后台守护进程挂掉的情况,需要手动启动来恢复正常. 这时则可以引用supervior进程管理工具来监控elasticsearch进程状态,实现进程挂掉自动 ...

  7. 用JavaScript中jQuery编写放大镜效果

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 【星云测试】开发者测试(4)-采用精准测试工具对dubbo微服务应用进行测试

    简介:本文主要目的是把现今主流的Dubbo框架项目和精准测试进行对接,通过精准测试的数据穿透.数据采集.测试用例与代码的双向追溯.数据分析等一系列精准测试的特有功能达到对项目质量的保证. 本次环境搭建 ...

  9. Vcenter虚拟化三部曲----VMWare ESXi 5.5安装及配置

    VMWare ESXi 5.5安装大概过程如下:制作虚拟化ESXi系统的USB启动盘,安装ESXi系统到USB,用USB启动ESXi系统.比较难理解,下面图解过程. 下载UNetbootin   (下 ...

  10. [iOS]UIFont的lineHeight与pointSize

    写这篇文章的初衷是由于我有一次想获取一个font的字体大小时使用了UIFont的lineHeight属性,结果是比字体的大小要大了一部分,然后经过查阅各种资料,发现了原因. 首先我们来看一看UIFon ...