HDU 5433 Xiao Ming climbing 动态规划
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5433
Xiao Ming climbing
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1346 Accepted Submission(s): 384
This mountain is pretty strange that its underside is a rectangle which size is n∗m and every little part has a special coordinate(x,y)and a height H.
In order to escape from this mountain,Ming needs to find out the devil and beat it to clean up the curse.
At the biginning Xiao Ming has a fighting will k,if it turned to 0 Xiao Ming won't be able to fight with the devil,that means failure.
Ming can go to next position(N,E,S,W)from his current position that time every step,(abs(H1−H2))/k 's physical power is spent,and then it cost 1 point of will.
Because of the devil's strong,Ming has to find a way cost least physical power to defeat the devil.
Can you help Xiao Ming to calculate the least physical power he need to consume.
Then T testcases follow.
The first line contains three integers n,m,k ,meaning as in the title(1≤n,m≤50,0≤k≤50).
Then the N × M matrix follows.
In matrix , the integer H meaning the height of (i,j),and '#' meaning barrier (Xiao Ming can't come to this) .
Then follow two lines,meaning Xiao Ming's coordinate(x1,y1) and the devil's coordinate(x2,y2),coordinates is not a barrier.
(The result should be rounded to 2 decimal places)
4 4 5
2134
2#23
2#22
2221
1 1
3 3
4 4 7
2134
2#23
2#22
2221
1 1
3 3
4 4 50
2#34
2#23
2#22
2#21
1 1
3 3
0.00
No Answer
题解:
看网上都是bfs的解法,这里来一发动态规划。
设dp[i][j][k]代表小明走到(i,j)时还剩k个单位的fighting will的状态;
令(i',j') 表示(i,j)上下左右的某一点,那么易得转移方程:
dp[i][j][k]=min(dp[i][j][k],dp[i'][j'][k+1]+abs(H[i][j]-H[i'][j'])/(k+1))
由于状态转移的顺序比较复杂,所有可以用记忆化搜索的方式来求解。
最终ans=min(dp[x2][y2][1],......,dp[x2][y2][k]]).
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; const int maxn=; double dp[maxn][maxn][maxn];
bool vis[maxn][maxn][maxn];
char mat[maxn][maxn]; int n,m,len;
int X1,Y1,X2,Y2; void init(){
memset(vis,,sizeof(vis));
memset(dp,0x7f,sizeof(dp));
} const int dx[]={-,,,};
const int dy[]={,,-,};
double solve(int x,int y,int k){
if(vis[x][y][k]) return dp[x][y][k];
vis[x][y][k]=;
for(int i=;i<;i++){
int tx=x+dx[i],ty=y+dy[i];
if(tx<||tx>n||ty<||ty>m||k+>len||mat[tx][ty]=='#') continue;
double add=fabs((mat[x][y]-mat[tx][ty])*1.0)/(k+);
dp[x][y][k]=min(dp[x][y][k],solve(tx,ty,k+)+add);
}
return dp[x][y][k];
} int main(){
int tc;
scanf("%d",&tc);
while(tc--){
init();
scanf("%d%d%d",&n,&m,&len);
for(int i=;i<=n;i++) scanf("%s",mat[i]+);
scanf("%d%d%d%d",&X1,&Y1,&X2,&Y2);
dp[X1][Y1][len]=; vis[X1][Y1][len]=;
double ans=0x3f;
int flag=;
for(int k=len;k>=;k--){
double tmp=solve(X2,Y2,k);
if(ans>tmp){
flag=;
ans=tmp;
}
}
if(flag) printf("%.2lf\n",ans);
else printf("No Answer\n");
}
return ;
}
HDU 5433 Xiao Ming climbing 动态规划的更多相关文章
- HDU 5433 Xiao Ming climbing dp
Xiao Ming climbing Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/ ...
- hdu 5433 Xiao Ming climbing(bfs+三维标记)
Problem Description Due to the curse made by the devil,Xiao Ming is stranded on a mountain and can ...
- HDU 5433 Xiao Ming climbing
题意:给一张地图,给出起点和终点,每移动一步消耗体力abs(h1 - h2) / k的体力,k为当前斗志,然后消耗1斗志,要求到终点时斗志大于0,最少消耗多少体力. 解法:bfs.可以直接bfs,用d ...
- HDu 5433 Xiao Ming climbing (BFS)
题意:小明因为受到大魔王的诅咒,被困到了一座荒无人烟的山上并无法脱离.这座山很奇怪: 这座山的底面是矩形的,而且矩形的每一小块都有一个特定的坐标(x,y)和一个高度H. 为了逃离这座山,小明必须找到大 ...
- HDU 4349 Xiao Ming's Hope 找规律
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349 Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/ ...
- HDU 4349 Xiao Ming's Hope lucas定理
Xiao Ming's Hope Time Limit:1000MS Memory Limit:32768KB Description Xiao Ming likes counting nu ...
- hdu 4349 Xiao Ming's Hope 规律
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4349——Xiao Ming's Hope——————【Lucas定理】
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu5433 Xiao Ming climbing
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission ...
随机推荐
- 开发Web版一对一远程直播教室只需30分钟 - 使用face2face网络教室
转载自:https://blog.csdn.net/wo_shi_ma_nong/article/details/88110111 在“为网站开发远程直播教室的折腾过程及最终实现”中,介绍了如何使用f ...
- usb驱动之打印usb设备信息(二)
以下是打印鼠标左右键及其他输入的源代码,详细说明见https://www.cnblogs.com/zhu-g5may/p/9309381.html /*参考/drivers/hid/usbhid/us ...
- 分别给Python类和实例增加属性和方法
#定义一个类Student class Student(object): pass #给类增加一个属性name Student.name = 'xm' print Student.name # xm ...
- ABAP ODATA 文字列からxstringへの変換およびその逆変換(UTF-8)
DATA(lv_str) = |Teststring|. TRY. * string -> xstring * default UTF-8 DATA(lv_xstr) = cl_abap_cod ...
- 如何将M文件转成独立可执行程序
如何将MATLAB程序编译成独立可执行的程序?生成独立可执行的程序(exe文件)步骤 1.安装编译器.可有多种选择,matlab自带了一个LCC,推荐使用VC++6.0,我基于VS 2013实现 ...
- 成都Uber优步司机奖励政策(4月11日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Mysql优化分页
背景: 库里面有张表,日增数据量百万条: 之前查询: SELECT * FROM `res_battery_data_history` LIMIT 1797000,10;
- Redis实现之客户端
客户端 Redis服务器是典型的一对多服务器程序:一个服务器可以与多个客户端建立网络连接,每个客户端可以向服务器发送命令请求,而服务器则接收并处理客户端发送的命令请求,并向客户端返回命令回复.通过使用 ...
- .NET Core中使用RabbitMQ正确方式
.NET Core中使用RabbitMQ正确方式 首先甩官网:http://www.rabbitmq.com/ 然后是.NET Client链接:http://www.rabbitmq.com/dot ...
- Drupal views 中合并显示字段
如图, 需要显示如下数据表格 表格的第三列是由两个字段组成的.分别是title 标题字段和body 内容字段. 默认情况下,一列只显示一个字段.如何同时显示两个呢? 这个问题难不到强大的views,要 ...