LINK


题目大意

给你一个序列分成k段

每一段的代价是满足\((a_i=a_j)\)的无序数对\((i,j)\)的个数

求最小的代价


思路

首先有一个暴力dp的思路是\(dp_{i,k}=min(dp_{j,k}+calc(j+1,i))\)

然后看看怎么优化

证明一下这个DP的决策单调性:

trz说可以冥想一下是对的就可以

所以我就不证了

(其实就是决策点向左移动一定不会更优)

然后就分治记录当前的处理区间和决策区间就可以啦


//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
typedef pair<int, int> pi;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e5 + 10;
const int M = 23;
int n, m, a[N], cnt[N] = {0};
ll nowl = 1, nowr = 0, res = 0;
ll dp[N][M];
void move_step(int al, int ar) {
while (nowr < ar) {
++nowr;
res += cnt[a[nowr]];
++cnt[a[nowr]];
}
while (nowl > al) {
--nowl;
res += cnt[a[nowl]];
++cnt[a[nowl]];
}
while (nowr > ar) {
--cnt[a[nowr]];
res -= cnt[a[nowr]];
--nowr;
}
while (nowl < al) {
--cnt[a[nowl]];
res -= cnt[a[nowl]];
++nowl;
}
}
void solve(int l, int r, int ql, int qr, int k) {
if (l > r) return;
int mid = (l + r) >> 1, pos = mid;
fu(i, ql, min(qr, mid - 1)) {
move_step(i + 1, mid);
if (dp[i][k - 1] + res < dp[mid][k]) {
dp[mid][k] = dp[i][k - 1] + res;
pos = i;
}
}
solve(l, mid - 1, ql, pos, k);
solve(mid + 1, r, pos, qr, k);
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
Read(n), Read(m);
fu(i, 1, n) Read(a[i]);
fu(i, 1, n)
fu(j, 0, m) dp[i][j] = INF_of_ll;
dp[0][0] = 0;
fu(i, 1, m) solve(1, n, 0, n, i);
Write(dp[n][m]);
return 0;
}

Codeforces 868F. Yet Another Minimization Problem【决策单调性优化DP】【分治】【莫队】的更多相关文章

  1. CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)

    题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...

  2. Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)

    Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后 ...

  3. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  4. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  5. 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)

    传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...

  6. [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)

    第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...

  7. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  8. 决策单调性优化dp 专题练习

    决策单调性优化dp 专题练习 优化方法总结 一.斜率优化 对于形如 \(dp[i]=dp[j]+(i-j)*(i-j)\)类型的转移方程,维护一个上凸包或者下凸包,找到切点快速求解 技法: 1.单调队 ...

  9. 算法学习——决策单调性优化DP

    update in 2019.1.21 优化了一下文中年代久远的代码 的格式…… 什么是决策单调性? 在满足决策单调性的情况下,通常决策点会形如1111112222224444445555588888 ...

  10. BZOJ4899: 记忆的轮廓【概率期望DP】【决策单调性优化DP】

    Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...

随机推荐

  1. C# static的用法详解

    C#   static的用法详解 有的东西你天天在用,但未必就代表你真正了解它,正如我之前所了解的 static . 一.静态类 静态类与非静态类的重要区别在于静态类不能实例化,也就是说,不能使用 n ...

  2. Windows 2008 系统IIS安装配置

    win8下安装IIS 1.右键“我的电脑”,选择“管理”,打开“服务器管理 器, 如下图: 2.点击左边菜单栏中的“角色“,弹出角色窗口,如下图: 3. 点击“添加角色”,弹出“添加角色向导”界面,如 ...

  3. Linux系统网络设备启动和禁止“ifconfig eth0 up/down”命令的跟踪

    前面文章讲了Linux系统的ethtool框架的一些东西,是从用户空间可以直观认识到的地方入手.同样,本文从Linux系统绝大部分人都熟悉的“ifconfig eth0 up”命令来跟踪一下此命令在内 ...

  4. AngularJs 控制台

    在控制台查看$scope对象 html: 通过控制器里面的一个元素来获取这个控制器的$scope var node=document.getElementById("NewsVote&quo ...

  5. POJ 3169 Layout(差分约束+最短路)题解

    题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...

  6. 论文笔记——N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning

    论文地址:https://arxiv.org/abs/1709.06030 1. 论文思想 利用强化学习,对网络进行裁剪,从Layer Removal和Layer Shrinkage两个维度进行裁剪. ...

  7. HDU 6053 TrickGCD(莫比乌斯反演)

    http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给出一个A数组,B数组满足Bi<=Ai. 现在要使得这个B数组的GCD值>=2,求共有多 ...

  8. ssh connection refused

    执行sudo apt-get install openssh-server命令安装SSH服务

  9. Hardcoded string should use @string resource 警告

    在布局文件中,文本的设置使用如下写法时会有警告:Hardcoded string "下一步", should use @string resource <Button and ...

  10. 创建一个 SQLite 数据库

    首先,我们学习如何创建一个SQLite 数据库.如果想要在data/example.sqlite 这个路径中创建一个示例数据库,就必须确保该路径存在.如果该路径不存在,就必须先创建路径:if (!di ...