【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp
题目描述
输入
输出
样例输入
3 2
X.
..
.X
样例输出
60
题解
容斥原理+状压dp
“给出所有局部极小值的位置” 有两层含义:
1.给出的位置是局部最小值;
2.非给出的位置不是局部最小值。
先考虑第一层含义怎么做:
我们把数从小到大填入矩阵中,那么如果一个格子是局部最小值且没有填入数,那么它周围的数都不能填。除此之外的位置均可选择。
因此设 $f[i][j]$ 表示填入前 $i$ 个数,局部最小值的填入情况为 $j$ 的方案数。
那么对于 $f[i][j]$ ,有两种转移:
不填局部最小值的位置,那么 $f[i][j]=f[i-1][j]+可以填的位置数$ 。我们预处理每种局部最小值填入情况下可以填入多少个数 $v[j]$,之后就能算出可以填的位置数 $v[j]-i+1$ 。
填局部最小值的位置,那么枚举填入了第 $k$ 个局部最小值,有 $f[i][j]=f[i-1][j-2^k]$ 。
最终 $f[nm][2^{局部最小值个数}-1]$ 即为答案。
再考虑第二层含义:
考虑容斥,那么讨论其它位置为局部最小值的情况,同样的方法进行dp,乘以容斥系数 $(-1)^{多填的位置数}$ 累计到答案中即可。
注意判断无解的情况。
由于容斥过程时刻要求一个局部最小值的八连通位置不能存在局部最小值,因此状态数是很小的。
时间复杂度 $O(跑得飞快)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 12345678
using namespace std;
const int dx[] = {0 , 1 , 1 , 1 , 0 , -1 , -1 , -1 , 0} , dy[] = {0 , 1 , 0 , -1 , -1 , -1 , 0 , 1 , 1};
char str[10];
int n , m , px[30] , py[30] , p , vis[6][10] , filled[6][10] , v[260] , f[30][260];
int solve()
{
int i , j , k;
memset(v , 0 , sizeof(v));
for(i = 0 ; i < (1 << p) ; i ++ )
{
memset(vis , 0 , sizeof(vis));
for(j = 0 ; j < p ; j ++ )
if(!(i & (1 << j)))
for(k = 0 ; k < 9 ; k ++ )
vis[px[j] + dx[k]][py[j] + dy[k]] = 1;
for(j = 1 ; j <= n ; j ++ )
for(k = 1 ; k <= m ; k ++ )
v[i] += !vis[j][k];
}
memset(f , 0 , sizeof(f));
f[0][0] = 1;
for(i = 1 ; i <= n * m ; i ++ )
{
for(j = 0 ; j < (1 << p) ; j ++ )
{
if(v[j] >= i) f[i][j] = f[i - 1][j] * (v[j] - i + 1) % mod;
for(k = 0 ; k < p ; k ++ )
if(j & (1 << k))
f[i][j] = (f[i][j] + f[i - 1][j ^ (1 << k)]) % mod;
}
}
return f[n * m][(1 << p) - 1];
}
int dfs(int x , int y)
{
if(y > m) x ++ , y = 1;
if(x > n) return solve();
int i , ans = dfs(x , y + 1);
for(i = 0 ; i < 9 ; i ++ )
if(filled[x + dx[i]][y + dy[i]])
break;
if(i == 9)
{
px[p] = x , py[p ++ ] = y , filled[x][y] = 1;
ans = (ans - dfs(x , y + 1) + mod) % mod;
p -- , filled[x][y] = 0;
}
return ans;
}
int main()
{
int i , j;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%s" , str + 1);
for(j = 1 ; j <= m ; j ++ )
if(str[j] == 'X')
px[p] = i , py[p ++ ] = j;
}
for(i = 0 ; i < p ; i ++ )
{
for(j = 0 ; j < i ; j ++ )
{
if(abs(px[i] - px[j]) <= 1 && abs(py[i] - py[j]) <= 1)
{
puts("0");
return 0;
}
}
filled[px[i]][py[i]] = 1;
}
printf("%d\n" , dfs(1 , 1));
return 0;
}
【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp的更多相关文章
- 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 667 Solved: 350 Description 有一 ...
- HDU 4336 容斥原理 || 状压DP
状压DP :F(S)=Sum*F(S)+p(x1)*F(S^(1<<x1))+p(x2)*F(S^(1<<x2))...+1; F(S)表示取状态为S的牌的期望次数,Sum表示 ...
- #186 path(容斥原理+状压dp+NTT)
首先只有一份图时显然可以状压dp,即f[S][i]表示S子集的哈密顿路以i为终点的方案数,枚举下个点转移. 考虑容斥,我们枚举至少有多少条原图中存在的边(即不合法边)被选进了哈密顿路,统计出这个情况下 ...
- [LuoguP2167][SDOI2009]Bill的挑战_容斥原理/状压dp
Bill的挑战 题目链接:https://www.luogu.org/problem/P2167 数据范围:略. 题解: 因为$k$特别小,想到状压. 状压的方式也非常简单,就是暴力枚举. 但是会不会 ...
- bzoj 3812: 主旋律 [容斥原理 状压DP]
3812: 主旋律 题意:一张有向图,求它的生成子图是强连通图的个数.\(n \le 15\) 先说一个比较暴力的做法. 终于知道n个点图的是DAG的生成子图个数怎么求了. 暴力枚举哪些点是一个scc ...
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 774 Solved: 411[Submit][Status ...
- 洛谷$P$3160 局部极小值 $[CQOI2012]$ 状压$dp$
正解:状压$dp$ 解题报告: 传送门! 什么神仙题昂,,,反正我是没有想到$dp$的呢$kk$,,,还是太菜了$QAQ$ 首先看数据范围,一个4×7的方格,不难想到最多有8个局部极小值,过于显然懒得 ...
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
随机推荐
- 对Linux命令od -tc -tx1的C语言程序实现myod-优化版
导语 自编od C语言实现版名为myod 上个星期有一个初代版,链接- myod原版 这星期的课上要求实现myod-系统调用版本,要求如下 1 参考教材第十章内容 2 用Linux IO相关系统调用编 ...
- ptyhon基础篇 day1
1.变量 print('helloworld!') name = 'alex' name2 = 'jack' print(name,name2) 2.input #用户输入 username = in ...
- PHPStrom 里修改Emmet对php的自动扩展
PHPStrom 7.1.3 Emmet 想必大家都比较清楚了.Emmet有个特点,对于匹配不到的符号,仍然会自动扩展为标签的形式,比如我输入aaaa,然后按tab,会自动扩展为<aaaa> ...
- win2012r2 关闭中英文悬浮小方框显示
因为那是微软输入法自带的 2012下关不掉 所以切换成美式键盘就没有了
- javaweb(三十一)——国际化(i18n)
一.国际化开发概述 软件的国际化:软件开发时,要使它能同时应对世界不同地区和国家的访问,并针对不同地区和国家的访问,提供相应的.符合来访者阅读习惯的页面或数据. 国际化(internationaliz ...
- selenium自动化之切换iframe
许多人在执行脚本的时候会发现,明明自己的元素路径没写错啊!怎么还是报元素未找到的异常呢?是的,没错,你可能是遇上iframe啦!下面将介绍关于iframe的相关操作. 例子:以163邮箱登录页面为例 ...
- JUC——JUC开发简介(一)
前言 JUC是Java5.0开始提供的一组专门实现多线程并发处理的开发框架,利用JUC开发架构可以有效的解决实际线程项目开发之中出现的死锁.阻塞.资源访问与公平机制. 此笔记主要记录java.util ...
- 获取一个数组里面第K大的元素
如何在O(n)内获取一个数组比如{9, 1, 2, 8, 7, 3, 6, 4, 3, 5, 0, 9, 19, 39, 25, 34, 17, 24, 23, 34, 20}里面第K大的元素呢? 我 ...
- CsvHelper文档-6类型转换
CsvHelper文档-6类型转换 CsvHelper使用类型转换器来转换string到对象,或者对象到string: ITypeConverter 类型转换器的结构,必须实现: public int ...
- Golang项目开发管理
工具 1. task(项目管理,类似于make) go get -u -v github.com/go-task/task/cmd/task 2. gopm(go依赖管理) go get -u git ...