最近在学习容斥相关,于是就看到了这个题。一开始以为是补集转化,但是观察一下马上发现不可行,好像直接做会比较容易一些。一个数满足要求的充要条件即为是一个幸运数字的倍数,那么容斥可以轻松搞定,只要枚举是一个数字/两个数字/三个数字的倍数……即可。打一个表找出<1e10的所有幸运数……竟然有2043个。不过显然其中互为倍数的那些个我们可以直接删掉其中大一些的那个数。这样删去之后,还剩下943个数。

  到这里我突然觉得好懵逼啊……左想右想再也想不出新的优化。于是看题解,发现竟然真的是爆搜加了两个剪枝。其中一个是当LCM>B的时候直接返回(不会产生贡献),第二个是从大到小排序,让大的数更容易被淘汰掉。果然爆搜的复杂度是非常玄妙的一件事……竟然跑得飞快?启发是一定要勇敢的打暴力,没准就过了(・ω <)

  不过为什么只有我一个要开unsigned long long 捏……

#include <bits/stdc++.h>
using namespace std;
#define int unsigned long long
#define ll long long
#define maxn 5000
int A, B, ans, luck[maxn], data[maxn];
int tot, cnt; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void dfs(int now, int n)
{
if(now) luck[++ cnt] = now;
if(now * (ll) + (ll) <= n) dfs(now * (ll) + (ll) , n);
if(now * (ll) + (ll) <= n) dfs(now * (ll) + (ll) , n);
} bool cmp(int a, int b) { return a > b; } int GCD(int a, int b)
{
while(b)
{
int c = a % b;
a = b;
b = c;
}
return a;
} void solve(int num, int cnt, int lcm)
{
if(num > tot)
{
if(cnt)
{
if(cnt & ) ans += (B / lcm) - ((A - ) / lcm);
else ans -= (B / lcm) - ((A - ) / lcm);
}
return;
}
solve(num + , cnt, lcm);
int gcd = GCD(data[num], lcm);
int LCM = (lcm / gcd) * data[num];
if(LCM <= B) solve(num + , cnt + , LCM);
} signed main()
{
A = read(), B = read();
dfs(, B);
sort(luck + , luck + + cnt);
for(int i = ; i <= cnt; i ++)
{
data[++ tot] = luck[i];
for(int j = ; j < tot; j ++)
if(!(luck[i] % data[j])) { tot --; break; }
}
sort(data + , data + + tot, cmp);
solve(, , );
printf("%lld\n", ans);
return ;
}

【题解】SCOI2010幸运数字的更多相关文章

  1. Bzoj 1853: [Scoi2010]幸运数字 容斥原理,深搜

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1774  Solved: 644[Submit][Status] ...

  2. 【BZOJ1853/2393】[Scoi2010]幸运数字/Cirno的完美算数教室 DFS+容斥

    [BZOJ1853][Scoi2010]幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那 ...

  3. 【LG2567】[SCOI2010]幸运数字

    [LG2567][SCOI2010]幸运数字 题面 洛谷 题目大意: 问你区间\([L,R](1\leq L\leq R\leq 10^{10})\)中有几个数是仅由\(6,8\)组成的数的倍数. 题 ...

  4. BZOJ 1853: [Scoi2010]幸运数字

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2117  Solved: 779[Submit][Status] ...

  5. bzoj 1853: [Scoi2010]幸运数字 容斥

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1170  Solved: 406[Submit][Status] ...

  6. bzoj1853[Scoi2010]幸运数字 容斥

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 3027  Solved: 1128[Submit][Status ...

  7. BZOJ_2393_Cirno的完美算数教室&&BZOJ_1853_[Scoi2010]幸运数字 _深搜+容斥原理

    BZOJ_2393_Cirno的完美算数教室&&BZOJ_1853_[Scoi2010]幸运数字 _深搜+容斥原理 题意: ~Cirno发现了一种baka数,这种数呢~只含有2和⑨两种 ...

  8. 【BZOJ 1853】 1853: [Scoi2010]幸运数字 (容斥原理)

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2472  Solved: 911 Description 在中国 ...

  9. 1853: [Scoi2010]幸运数字[容斥原理]

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2405  Solved: 887[Submit][Status] ...

  10. BZOJ1853 Scoi2010 幸运数字 【枚举+容斥】

    BZOJ1853 Scoi2010 幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号 ...

随机推荐

  1. js面试之一个字符串中出现次数最多的字符是?出现几次?

    最近在找面试题的时候发现了许多有趣的题目,在这里用随笔记录下~ 关于“一个字符串中出现次数最多的字符...”这种问题在笔试题中出现的频率还是很高的,我自己也找到了几种方法处理 var str = &q ...

  2. Python基本数据类型(一)

    我会持续更新.... 字符串类型 字符串定义: 字符串的格式:'字符串', "字符串", """字符串"""字符串一旦被 ...

  3. JavaSE基础复习---2---2018/9/28

    目录: 1.数据类型 2.变量 3.数组 1.数据类型 谈到java的数据类型,必须知道java是强类型语言.首先,每个变量有类型,每个表达式有类型,而且每种类型是严格定义的.其次,所有的数值传递,不 ...

  4. backtrace函数

    1.函数原型 #include <execinfo.h> int backtrace(void **buffer, int size); 该函数获取当前线程的调用堆栈,获取的信息将会被存放 ...

  5. rhel6.4 根目录扩容

    状况:根目录容量不足 解决:扩容根目录 ====================================================== 解决步骤: 1. 将新的磁盘加入服务器 2. 使用 ...

  6. C++ vector二维数组

    C++ 构建二维动态数组 int **p; p = ]; //注意,int*[10]表示一个有10个元素的指针数组 ; i < ; ++i) { p[i] = ]; } 这样就构成10*5的数组 ...

  7. python2.7练习小例子(十二)

        12):题目:打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身.例如:153是一个"水仙花数" ...

  8. jquery validation remote进行唯一性验证时只使用自定义参数,不使用默认参数

    在使用validation进行唯一性验证时,想各个模块写一个统一的方法,相统一参数名称,但是remote方法会默认把对应的参数传过去 如: 会把role.roleName默认作为变量提交过去 所以想自 ...

  9. 20145202马超 2006-2007-2 《Java程序设计》第3周学习总结

    20145202马超 2016-2017-2 <Java程序设计>第3周学习总结 教材学习内容总结 函数的重载:在同一个类中,允许存在一个以上的同名函数,只要他们的参数数目不同就可以.与返 ...

  10. git删除本地及远程分支

    1. 删除本地分支: git branch -d branchName 2. 删除远程分支: // 方法一:将删除的本地分支推到远程(要删除的远程分支在本地有映射) git push origin : ...