最近在学习容斥相关,于是就看到了这个题。一开始以为是补集转化,但是观察一下马上发现不可行,好像直接做会比较容易一些。一个数满足要求的充要条件即为是一个幸运数字的倍数,那么容斥可以轻松搞定,只要枚举是一个数字/两个数字/三个数字的倍数……即可。打一个表找出<1e10的所有幸运数……竟然有2043个。不过显然其中互为倍数的那些个我们可以直接删掉其中大一些的那个数。这样删去之后,还剩下943个数。

  到这里我突然觉得好懵逼啊……左想右想再也想不出新的优化。于是看题解,发现竟然真的是爆搜加了两个剪枝。其中一个是当LCM>B的时候直接返回(不会产生贡献),第二个是从大到小排序,让大的数更容易被淘汰掉。果然爆搜的复杂度是非常玄妙的一件事……竟然跑得飞快?启发是一定要勇敢的打暴力,没准就过了(・ω <)

  不过为什么只有我一个要开unsigned long long 捏……

#include <bits/stdc++.h>
using namespace std;
#define int unsigned long long
#define ll long long
#define maxn 5000
int A, B, ans, luck[maxn], data[maxn];
int tot, cnt; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void dfs(int now, int n)
{
if(now) luck[++ cnt] = now;
if(now * (ll) + (ll) <= n) dfs(now * (ll) + (ll) , n);
if(now * (ll) + (ll) <= n) dfs(now * (ll) + (ll) , n);
} bool cmp(int a, int b) { return a > b; } int GCD(int a, int b)
{
while(b)
{
int c = a % b;
a = b;
b = c;
}
return a;
} void solve(int num, int cnt, int lcm)
{
if(num > tot)
{
if(cnt)
{
if(cnt & ) ans += (B / lcm) - ((A - ) / lcm);
else ans -= (B / lcm) - ((A - ) / lcm);
}
return;
}
solve(num + , cnt, lcm);
int gcd = GCD(data[num], lcm);
int LCM = (lcm / gcd) * data[num];
if(LCM <= B) solve(num + , cnt + , LCM);
} signed main()
{
A = read(), B = read();
dfs(, B);
sort(luck + , luck + + cnt);
for(int i = ; i <= cnt; i ++)
{
data[++ tot] = luck[i];
for(int j = ; j < tot; j ++)
if(!(luck[i] % data[j])) { tot --; break; }
}
sort(data + , data + + tot, cmp);
solve(, , );
printf("%lld\n", ans);
return ;
}

【题解】SCOI2010幸运数字的更多相关文章

  1. Bzoj 1853: [Scoi2010]幸运数字 容斥原理,深搜

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1774  Solved: 644[Submit][Status] ...

  2. 【BZOJ1853/2393】[Scoi2010]幸运数字/Cirno的完美算数教室 DFS+容斥

    [BZOJ1853][Scoi2010]幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那 ...

  3. 【LG2567】[SCOI2010]幸运数字

    [LG2567][SCOI2010]幸运数字 题面 洛谷 题目大意: 问你区间\([L,R](1\leq L\leq R\leq 10^{10})\)中有几个数是仅由\(6,8\)组成的数的倍数. 题 ...

  4. BZOJ 1853: [Scoi2010]幸运数字

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2117  Solved: 779[Submit][Status] ...

  5. bzoj 1853: [Scoi2010]幸运数字 容斥

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1170  Solved: 406[Submit][Status] ...

  6. bzoj1853[Scoi2010]幸运数字 容斥

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 3027  Solved: 1128[Submit][Status ...

  7. BZOJ_2393_Cirno的完美算数教室&&BZOJ_1853_[Scoi2010]幸运数字 _深搜+容斥原理

    BZOJ_2393_Cirno的完美算数教室&&BZOJ_1853_[Scoi2010]幸运数字 _深搜+容斥原理 题意: ~Cirno发现了一种baka数,这种数呢~只含有2和⑨两种 ...

  8. 【BZOJ 1853】 1853: [Scoi2010]幸运数字 (容斥原理)

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2472  Solved: 911 Description 在中国 ...

  9. 1853: [Scoi2010]幸运数字[容斥原理]

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2405  Solved: 887[Submit][Status] ...

  10. BZOJ1853 Scoi2010 幸运数字 【枚举+容斥】

    BZOJ1853 Scoi2010 幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号 ...

随机推荐

  1. Vue插槽 slot

    1. 什么是插槽 插槽slot 是往父组件中插入额外内容,实现组件的复用,一个插槽插入到一个对应的标签中 2. 实例: 一个组件中不允许有两个匿名插槽 </head> <body&g ...

  2. Java源码解析——集合框架(一)——ArrayList

    ArrayList源码分析 ArrayList就是动态数组,是Array的复杂版本,它提供了动态的增加和减少元素.灵活的设置数组的大小. 一.类声明 public class ArrayList< ...

  3. Qt on Android 蓝牙通信开发

    版权声明:本文为MULTIBEANS ORG研发跟随文章,未经MLT ORG允许不得转载. 最近做项目,需要开发安卓应用,实现串口的收发,目测CH340G在安卓手机上非常麻烦,而且驱动都是Java版本 ...

  4. Redis缓存数据库的安装与配置(2)

    1.为php安装redis客户端扩展 wget https://github.com/nicolasff/phpredis/archive/master.zip tar xf phpredis-mas ...

  5. Python自动化运维——DNS处理模块

    Infi-chu: http://www.cnblogs.com/Infi-chu/ 模块:dnspython 功能: 支持所有的记录类型 可以用于查询.传输并动态更新ZONE信息 支持TSIG(事务 ...

  6. python2.7练习小例子(二十六)

        26):题目:给一个不多于5位的正整数,要求:一.求它是几位数,二.逆序打印出各位数字.     程序分析:学会分解出每一位数.     程序源代码: #!/usr/bin/python # ...

  7. git的关于测试的相关的内容

    今天,我们来讲一下git的分支的一些内容,在以前的时候,我一直都以为,对于一个项目,这个时候,我们把这个项目叫做项目a项目,这个a项目有master,staging,以及我自己的分支xxx,当我想上测 ...

  8. consul 使用方式

    1.在配置文件配置好的情况下,在运行 consul agent -server -datacenter=([xacl.json].[acl_datacenter]) -bootstrap -data- ...

  9. Oracle 完全理解connect by-详细脚本-可实战

    狒狒Q971751392 未来星开发团队--狒狒(QQ:9715234) oracle树查询的最重要的就是select…start with…connect by…prior语法了.依托于该语法,我们 ...

  10. 【vim环境配置】解决ubuntu上 由YouCompleteMe插件配置不当引起的 自动补全失效的问题

    背景: 由于不可抗拒的原因,学习环境由之前centos的一台机器上,变成了ubuntu的一台机器上.因此,需要在新的ubuntu的机器上再配置一次vim环境.算起来这已经是第三次配置vim环境了(ma ...