题目链接

题意 : 给你一个同余方程, x*x ≡ x  (mod n),让你求出所有的小于n的x。

思路 :

先来看同余的概念 :给定一个正整数m,如果两个整数a和b满足a-b能被m整除,即m|(a-b),那么就称整数a与b对模m同余,记作a≡b(mod m)。对模m同余是整数的一个等价关系。

因此题目中给定的式子可以写成:(x*x-x)/n=k.也就是说(x*x-x)是n的整数倍,取余n是0.

因为n=p*q,而且gcd(p,q)=1 ;所以上式可以写为,x*(x-1)/(p*q)=k.

让我们分情况讨论:

上式中,

  1. 当k=0时,要么x为0,要么x-1为0,所以,两个解已经出来了,0和1。
  2. 当k!=0时,要么p是x的因数并且q是x-1的因数,要么q是x的因数,p是x-1的因数。因此,这种情况下只要求出两种情况的p和q,然后再求他们的倍数。

x是不可能同时存在p和q两个因子的,因为这样就大于n了。

对于第1种情况,设x是p的a倍,x-1是q的b倍,则p*a-q*b=1.也就是说,因为gcd(p,q)=1,所以p*a-q*b=gcd(p,q).

让我们再来看扩展欧几里得 : 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a, b) =d(解一定存在)。

所以用扩展欧几里得将p*a-q*b=gcd(p,q).这个式子里的a求出来,然后乘上枚举出来的p。就是x的又一个解。最后再求第二种情况下的a即可。

#include <stdio.h>
#include <iostream> using namespace std ; void exGcd(int a,int b,int& x,int& y)
{
if(b == )
{
x = ;
y = ;
return ;
//return a;
}
exGcd(b,a%b,x,y);
int t = x ;
x = y ;
y = t - a / b * y ;
// return r;
}
bool isprime(int x)
{
for(int i = ; i * i < x ; i++)
{
if(x % i == )
return false;
}
return true ;
}
int main()
{
int T,n,p,q,x,y ;
scanf("%d",&T) ;
while(T--)
{
scanf("%d",&n) ;
for(int i = ; i * i < n ; i++)
{
if( (n%i == ) && isprime(i) && isprime(n/i) )
{
p = i ;
q = n/i ;
break ;
}
}
exGcd(p,q,x,y) ;
int ans1 = p*x < ? p*x+n : p*x ;
exGcd(q,p,x,y) ;
int ans2 = q*x < ? q*x+n : q*x ;
if(ans1 > ans2)
swap(ans1,ans2) ;
printf("0 1 %d %d\n",ans1,ans2) ;
}
return ;
}

URAL 1204. Idempotents (扩展欧几里得)的更多相关文章

  1. URAL1204. Idempotents(扩展欧几里得)

    1204 大体推推 会出来这个式子 x(x-1) = k*n;n = p*q ;x(x-1)%(p*q)==0; 因为p,q都为素数 那也就是说x和x-1中必定包含这两个数 而且一个里面只能有一个 不 ...

  2. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  3. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  4. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  5. UVA 10090 Marbles 扩展欧几里得

    来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...

  6. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  7. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  8. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  9. poj 2142 扩展欧几里得解ax+by=c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

随机推荐

  1. FastAdmin 在线命令生成时出错的分析

    FastAdmin 在线命令生成时出错的分析 出错现象 版本环境 FastAdmin 版本:1.0.0.20180806_beta 在线命令插件版本:1.0.3 分析 2018-08-13 16:12 ...

  2. Raid 技术简介

    独立硬盘冗余阵列(RAID, Redundant Array of Independent Disks),旧称廉价磁盘冗余阵列,简称硬盘阵列.其基本思想就是把多个相对便宜的硬盘组合起来,成为一个硬盘阵 ...

  3. Python3中的http.client模块

    http 模块简介 Python3 中的 http 包中含有几个用来开发 HTTP 协议的模块. http.client 是一个底层的 HTTP 协议客户端,被更高层的 urllib.request ...

  4. Linux添加路由

    在Linux的VM中可以添加.删除路由. 中如图的拓扑结构中需要在中间的VM上添加路由,使最左边的VM和最右边的VM实现互通. 在这台VM上需要添加IP Forwarding的功能,在操作系统中也需要 ...

  5. CAN总线扩展数据帧介绍

    在扩展CAN 数据帧中,紧随SOF 位的是32 位的仲裁字段.仲裁字段的前11 位为29 位标识符的最高有效位(Most Significant bit,MSb)(基本lD) .紧随这11 位的是替代 ...

  6. TELNET协议规范

    ARPA Internet上的主机被要求采用并实现此标准. 介绍 TELNET Protocol的目的是提供一个相对通用的,双向的,面向八位字节的通信方法.它主要的目标是允许接口终端设备的标准方法和面 ...

  7. PTA 畅通工程之最低成本建设问题(30 分)(最小生成树 krusal)

    畅通工程之最低成本建设问题(30 分) 某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路 ...

  8. thinkphp中的session的使用和理解!

    session的作用:session可以长时间的保存数据,不丢失. session的常用于: 1.登录,保存登录信息 2.保存购物车信息 3.保存验证码信息 定义session常量 define('W ...

  9. 1.3Broker

    Celery需要一种解决消息的发送和接受的方式,我们把这种用来存储消息的的中间装置叫做message broker, 也可叫做消息中间人. 作为中间人,我们有几种方案可选择: 1.RabbitMQ R ...

  10. 3.使用Maven构建Web项目

    转自:https://blog.csdn.net/m261030956/article/details/46481837 从网上查了一些资料,才算明白(也就是怎么操作吧),怎么使用Maven构建一个W ...