URAL 1204. Idempotents (扩展欧几里得)
题意 : 给你一个同余方程, x*x ≡ x (mod n),让你求出所有的小于n的x。
思路 :
先来看同余的概念 :给定一个正整数m,如果两个整数a和b满足a-b能被m整除,即m|(a-b),那么就称整数a与b对模m同余,记作a≡b(mod m)。对模m同余是整数的一个等价关系。
因此题目中给定的式子可以写成:(x*x-x)/n=k.也就是说(x*x-x)是n的整数倍,取余n是0.
因为n=p*q,而且gcd(p,q)=1 ;所以上式可以写为,x*(x-1)/(p*q)=k.
让我们分情况讨论:
上式中,
- 当k=0时,要么x为0,要么x-1为0,所以,两个解已经出来了,0和1。
- 当k!=0时,要么p是x的因数并且q是x-1的因数,要么q是x的因数,p是x-1的因数。因此,这种情况下只要求出两种情况的p和q,然后再求他们的倍数。
x是不可能同时存在p和q两个因子的,因为这样就大于n了。
对于第1种情况,设x是p的a倍,x-1是q的b倍,则p*a-q*b=1.也就是说,因为gcd(p,q)=1,所以p*a-q*b=gcd(p,q).
让我们再来看扩展欧几里得 : 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a, b) =d(解一定存在)。
所以用扩展欧几里得将p*a-q*b=gcd(p,q).这个式子里的a求出来,然后乘上枚举出来的p。就是x的又一个解。最后再求第二种情况下的a即可。
#include <stdio.h>
#include <iostream> using namespace std ; void exGcd(int a,int b,int& x,int& y)
{
if(b == )
{
x = ;
y = ;
return ;
//return a;
}
exGcd(b,a%b,x,y);
int t = x ;
x = y ;
y = t - a / b * y ;
// return r;
}
bool isprime(int x)
{
for(int i = ; i * i < x ; i++)
{
if(x % i == )
return false;
}
return true ;
}
int main()
{
int T,n,p,q,x,y ;
scanf("%d",&T) ;
while(T--)
{
scanf("%d",&n) ;
for(int i = ; i * i < n ; i++)
{
if( (n%i == ) && isprime(i) && isprime(n/i) )
{
p = i ;
q = n/i ;
break ;
}
}
exGcd(p,q,x,y) ;
int ans1 = p*x < ? p*x+n : p*x ;
exGcd(q,p,x,y) ;
int ans2 = q*x < ? q*x+n : q*x ;
if(ans1 > ans2)
swap(ans1,ans2) ;
printf("0 1 %d %d\n",ans1,ans2) ;
}
return ;
}
URAL 1204. Idempotents (扩展欧几里得)的更多相关文章
- URAL1204. Idempotents(扩展欧几里得)
1204 大体推推 会出来这个式子 x(x-1) = k*n;n = p*q ;x(x-1)%(p*q)==0; 因为p,q都为素数 那也就是说x和x-1中必定包含这两个数 而且一个里面只能有一个 不 ...
- URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
随机推荐
- delphi 理解ParamStr
delphi 理解ParamStr 演示代码如下 ::code procedure TForm1.FormCreate(Sender: TObject); var i: Integer; begi ...
- cvc-complex-type.2.4.a: Invalid content was found starting with element 'async-supported'
<servlet> <servlet-name>springMVC</servlet-name> <servlet-class>org.springfr ...
- profile MySQL性能分析工具
分析SQL执行带来的开销是优化SQL的重要手段.在MySQL数据库中,可以通过配置profiling参数来启用SQL剖析.该参数可以在全局和session级别来设置.对于全局级别则作用于整个MySQL ...
- PTA 说反话-加强版(20 分)(字符串处理)
说反话-加强版(20 分) 给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出. 输入格式: 测试输入包含一个测试用例,在一行内给出总长度不超过500 000的字符串.字符串由若干单词和若干空 ...
- win7 网站发布备注
1.更改 .NET Framework 版本(改原设置v2.0 为v4.0) 2.程序池设置 3.基本设置 4.Web.config (debug="false") <sys ...
- Dynamics CRM 2011 Web Service
Data Services: SOAP Endpoint REST Endpoint Capabilities Assign Records Retrieve Metadata Execute M ...
- WP8.1通过StreamSocket连接C++服务器
注:当服务端和手机模拟器运行在一台机器时,会有奇怪错误.将服务端放在其它机器上更改客户端连接地址,运行正常.或者直接用本机modern调试也可以. 实例化一个对象 StreamSocket clien ...
- 自定义条件判断两对象相等Equals的方法
自定义两对象是否相等方法,必须用到GetHashCode方法,如 public class AirspaceCompareByUUID : IEqualityComparer<AIRSPACE_ ...
- 3.solr学习速成之索引添加 查询 删除
solrserver.java public class solrServer { private solrServer(){}; final static String SOLR_URL = &qu ...
- 第一次调用Web service响应速度慢的解决办法
Env: Client: WinForm(Net Framework 2.0) Server:Web Service(Net Framework 4.0) Problem: Client use pr ...