URAL 1204. Idempotents (扩展欧几里得)
题意 : 给你一个同余方程, x*x ≡ x (mod n),让你求出所有的小于n的x。
思路 :
先来看同余的概念 :给定一个正整数m,如果两个整数a和b满足a-b能被m整除,即m|(a-b),那么就称整数a与b对模m同余,记作a≡b(mod m)。对模m同余是整数的一个等价关系。
因此题目中给定的式子可以写成:(x*x-x)/n=k.也就是说(x*x-x)是n的整数倍,取余n是0.
因为n=p*q,而且gcd(p,q)=1 ;所以上式可以写为,x*(x-1)/(p*q)=k.
让我们分情况讨论:
上式中,
- 当k=0时,要么x为0,要么x-1为0,所以,两个解已经出来了,0和1。
- 当k!=0时,要么p是x的因数并且q是x-1的因数,要么q是x的因数,p是x-1的因数。因此,这种情况下只要求出两种情况的p和q,然后再求他们的倍数。
x是不可能同时存在p和q两个因子的,因为这样就大于n了。
对于第1种情况,设x是p的a倍,x-1是q的b倍,则p*a-q*b=1.也就是说,因为gcd(p,q)=1,所以p*a-q*b=gcd(p,q).
让我们再来看扩展欧几里得 : 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a, b) =d(解一定存在)。
所以用扩展欧几里得将p*a-q*b=gcd(p,q).这个式子里的a求出来,然后乘上枚举出来的p。就是x的又一个解。最后再求第二种情况下的a即可。
#include <stdio.h>
#include <iostream> using namespace std ; void exGcd(int a,int b,int& x,int& y)
{
if(b == )
{
x = ;
y = ;
return ;
//return a;
}
exGcd(b,a%b,x,y);
int t = x ;
x = y ;
y = t - a / b * y ;
// return r;
}
bool isprime(int x)
{
for(int i = ; i * i < x ; i++)
{
if(x % i == )
return false;
}
return true ;
}
int main()
{
int T,n,p,q,x,y ;
scanf("%d",&T) ;
while(T--)
{
scanf("%d",&n) ;
for(int i = ; i * i < n ; i++)
{
if( (n%i == ) && isprime(i) && isprime(n/i) )
{
p = i ;
q = n/i ;
break ;
}
}
exGcd(p,q,x,y) ;
int ans1 = p*x < ? p*x+n : p*x ;
exGcd(q,p,x,y) ;
int ans2 = q*x < ? q*x+n : q*x ;
if(ans1 > ans2)
swap(ans1,ans2) ;
printf("0 1 %d %d\n",ans1,ans2) ;
}
return ;
}
URAL 1204. Idempotents (扩展欧几里得)的更多相关文章
- URAL1204. Idempotents(扩展欧几里得)
1204 大体推推 会出来这个式子 x(x-1) = k*n;n = p*q ;x(x-1)%(p*q)==0; 因为p,q都为素数 那也就是说x和x-1中必定包含这两个数 而且一个里面只能有一个 不 ...
- URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
随机推荐
- 设置ubantu的软件源地址
查看所用的源 $ sudo vim /etc/apt/sources.list 由于安装的Ubuntu Server 16.04.1 LTS是英文版的,软件源就默认都是 us.archive.ubun ...
- 2、Flume1.7.0入门:安装、部署、及flume的案例
一.什么是Flume? flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用. flume的特点: flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的 ...
- sar 命令
sar 命令使用详解 1.使用sar命令查看网络流量(每两秒显示一次,共查看3次): [root@localhost ~]# sar -n DEV 2 3Linux 2.6.32-431.el6.x8 ...
- 【转】Jmeter JDBC请求的问题
如何添加一个JDBC请求?本次以Orale为例. 1 From网上下载一个名为Class12.jar 的驱动包,然后放到该目录下:[否则会提示no suitable driver] 2 查看链接O ...
- Java-Maven-Runoob:Maven教程
ylbtech-Java-Maven-Runoob:Maven教程 1.返回顶部 1. Maven 教程 Maven 翻译为"专家"."内行",是 Apache ...
- Unity Shader入门教程(三)自制光照模型
光照模型的概念目前还不明晰,因为笔者也是一个初学者,所以请小心对待笔者介绍的内容.笔者认为光照模型是规定光照算法的模型,比如说前面提到的Lambert光照模型,规定了材质表面的光线的表达式为 环境光+ ...
- Java多线程总结【转】
多线程作为Java中很重要的一个知识点,在此还是有必要总结一下的. 一.线程的生命周期及五种基本状态 关于Java中线程的生命周期,首先看一下下面这张较为经典的图: 上图中基本上囊括了Java中多线程 ...
- Oracle 复杂查询(1)
一.复杂查询 1. 列出至少有一个员工的所有部门编号.名称,并统计出这些部门的平均工资.最低工资.最高工资. 1.确定所需要的数据表: emp表:可以查询出员工的数量: dept表:部门名称: emp ...
- [C#] 等待启动的进程执行完毕
有能有时候我们启动了一个进程,必须等到此进程执行完毕,或是,一段时间, 关闭进程后再继续往下走. Example sample1 等待应用程序执行完毕 //等待应用程序执行完毕 private voi ...
- 《转》我的ARM学习经历
1.基础阶段 话说06年第一份工作从事的是PLC开发,用protel画原理图和PCB,写AVR单片机程序,焊焊板子,还去过华强北买器件,比较杂,但是接触面比较广,为进一步学ARM打下了基础. ...