题目链接:HDU-6057

题意:

思路:先按照官方题解推导出下面的式子:

现在唯一的问题就是怎么解决[bit(x)-bit(y)=bit(k)]的问题。

我们定义\( F(A,k)_{i}=\left[ bit\left( i\right) =k\right] * A_{i} \),相当于把A、B、C分别按照bit划分成m+1个序列。

有如下公式:

同时我们发现\( C_k=F(C,bit(k)))_k \)。

然后我们就可以搞出来啦!

代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef long long LL; const LL MAXN=;
const LL MOD=;
LL A[][MAXN],B[][MAXN],C[][MAXN];
LL two[];
LL bit(LL x)
{
LL ret=;
while(x>)
{
if(x&) ret++;
x>>=;
}
return ret;
}
// 快速幂
// 求x^n%mod
// Verified!
LL powMod(LL x,LL n,LL mod)
{
LL res=;
while(n>)
{
if(n&) res=res*x % mod;
x=x*x % mod;
n>>=;
}
return res;
}
LL inv(LL a,LL m)
{
return powMod(a,m-,m);
// return powMod(a,eularPhi(m)-1,m);
}
LL inv2;
void FWT_Xor(LL *A, LL len) {
if (len == ) return;
LL len2 = len >> ;
FWT_Xor(A, len2);
FWT_Xor(A + len2, len2);
for (LL i = ; i < len2; ++i) {
LL x = A[i], y = A[i + len2];
A[i] = (x + y) % MOD;
A[i + len2] = ((((x - y) % MOD) + MOD) % MOD);
}
}
void IFWT_Xor(LL *A, LL len) {
if (len == ) return;
LL len2 = len >> ;
for (LL i = ; i < len2; ++i) {
LL x = A[i], y = A[i + len2];
A[i] = ((x + y) % MOD) * inv2 % MOD;
A[i + len2] = ((((x - y) % MOD) + MOD) % MOD) * inv2 % MOD;
}
IFWT_Xor(A, len2);
IFWT_Xor(A + len2, len2);
}
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
inv2=inv(,MOD);
memset(A,,sizeof(A));
memset(B,,sizeof(B));
memset(C,,sizeof(C));
two[]=;
for(LL i=;i<;i++) two[i]=two[i-]*%MOD; LL m;
scanf("%lld",&m);
for(LL i=;i<(<<m);i++)
{
LL x;
scanf("%lld",&x);
A[bit(i)][i]=x*two[bit(i)]%MOD;
}
for(LL i=;i<(<<m);i++)
{
LL x;
scanf("%lld",&x);
B[bit(i)][i]=x;
}
for(LL i=;i<=m;i++) FWT_Xor(A[i],(<<m));
for(LL i=;i<=m;i++) FWT_Xor(B[i],(<<m));
for(LL k=;k<=m;k++)
for(LL i=k;i<=m;i++)
for(LL j=;j<(<<m);j++)
C[k][j]=(C[k][j]+A[i-k][j]*B[i][j])%MOD;
for(LL i=;i<=m;i++) IFWT_Xor(C[i],(<<m));
LL ans=,mi=;
for(LL i=;i<(<<m);i++)
{
ans=(ans+C[bit(i)][i]*mi)%MOD;
mi=mi*%MOD;
}
printf("%lld\n",ans);
return ;
}

HDU 6057 Kanade's convolution的更多相关文章

  1. HDU 6057 - Kanade's convolution | 2017 Multi-University Training Contest 3

    /* HDU 6057 - Kanade's convolution [ FWT ] | 2017 Multi-University Training Contest 3 题意: 给定两个序列 A[0 ...

  2. HDU 6057 Kanade's convolution(FWT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6057 [题目大意] 有 C[k]=∑_(i&j=k)A[i^j]*B[i|j] 求 Ans ...

  3. hdu 6057 Kanade's convolution(子集卷积)

    题解: 然后就是接下来如何fwt 也就是如何处理bit(x) - bit(y) = bit(k)这个条件. 其实就是子集卷积. 把bit(x)和bit(y)划分成两个集合,然后就是子集卷积的形式. 这 ...

  4. HDU 6059 - Kanade's trio | 2017 Multi-University Training Contest 3

    思路来自题解(看着题解和标程瞎吉尔比划了半天) /* HDU 6059 - Kanade's trio [ 字典树 ]  |  2017 Multi-University Training Conte ...

  5. HDU 6058 - Kanade's sum | 2017 Multi-University Training Contest 3

    /* HDU 6058 - Kanade's sum [ 思维,链表 ] | 2017 Multi-University Training Contest 3 题意: 给出排列 a[N],求所有区间的 ...

  6. hdu 6058 Kanade's sum(模拟链表)

    Kanade's sum Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  7. hdu 6059 Kanade's trio(字典树)

    Kanade's trio Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)T ...

  8. HDU 6058 Kanade's sum 二分,链表

    Kanade's sum Problem Description Give you an array A[1..n]of length n. Let f(l,r,k) be the k-th larg ...

  9. HDU - 6058 Kanade's sum

    Bryce1010模板 http://acm.hdu.edu.cn/showproblem.php?pid=6058 /* 思路是:找出每个x为第k大的区间个数有多少 用pos[i]保存当前x的位置, ...

随机推荐

  1. Huge Mods UVA - 10692(指数循环节)

    题意: 输入正整数a1,a2,a3..an和模m,求a1^a2^...^an mod m 解析: #include <iostream> #include <cstdio> # ...

  2. hdu-3308 LCIS (线段树区间合并)

    LCIS Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  3. PHP-从零开始使用Solr搜索引擎服务(上)

    前言: 原文地址: http://www.cnblogs.com/JimmyBright/p/7156069.html 使用搜索引擎,我们常规的数据查询会快很多,还可以对关键词进行中文分词查询,返回一 ...

  4. 分享关于js解析URL中的参数的方法

    function GetQueryString(name) { var reg = new RegExp("(^|&)" + name + "=([^&] ...

  5. linux内核设计与实现一书阅读整理 之第五章

    CHAPTER 5 系统调用 5.1 与内核通信 系统调用在用户空间进程和硬件设备之间添加了一个中间层,该层主要作用有三个: 为用户空间提供了一种硬件的抽象接口 系统调用保证了系统的稳定和安全 每个进 ...

  6. JS的强制类型转换

    将值从一种类型转换为另一种类型通常称为类型转换,这是显式的情况,隐式的情况称为强制类型转换. JavaScript中的强制类型转换总是返回标量基本类型值,如字符串.数字和布尔值,不会返回对象和函数. ...

  7. 谷歌发布 Android 8.1 首个开发者预览版,优化内存效率

    今晨,谷歌推出了 Android 8.1 首个开发者预览版,此次升级涵盖了针对多个功能的提升优化,其中包含对 Android Go (设备运行内存小于等于 1 GB)和加速设备上对机器学习的全新神经网 ...

  8. 解题:USACO07FEB The Cow Lexicon

    题面 第一次做Trie上dp,感谢 @i207M 的资瓷 对子串们建立一棵Trie,设$dp[i][j]$表示到母串第$i$位为止在$Trie$上的$j$号节点时的最小修改数量,然后就可以枚举母串各位 ...

  9. 洛谷P3201 [HNOI2009]梦幻布丁(链表 + 启发式合并)

    题目链接 给出 \(n\) 个布丁,每个补丁都有其颜色.现在有 \(m\) 次操作,每次操作将第 \(x_i\) 种颜色全部变为第 \(y_i\) 种颜色. 操作中可能会插入询问,回答目前总共有多少段 ...

  10. MySQL服务无法启动,错误代码1067

    偶然间一次服务器意外重启 重启过后发现MySQL服务停止 手动启动之,发现无法启动 错误代码1067,进程意外终止 遂开始排查问题,首先想到的可能就是my.ini文件出了问题 但是已经忘了写过什么东西 ...