题目链接:HDU-6057

题意:

思路:先按照官方题解推导出下面的式子:

现在唯一的问题就是怎么解决[bit(x)-bit(y)=bit(k)]的问题。

我们定义\( F(A,k)_{i}=\left[ bit\left( i\right) =k\right] * A_{i} \),相当于把A、B、C分别按照bit划分成m+1个序列。

有如下公式:

同时我们发现\( C_k=F(C,bit(k)))_k \)。

然后我们就可以搞出来啦!

代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef long long LL; const LL MAXN=;
const LL MOD=;
LL A[][MAXN],B[][MAXN],C[][MAXN];
LL two[];
LL bit(LL x)
{
LL ret=;
while(x>)
{
if(x&) ret++;
x>>=;
}
return ret;
}
// 快速幂
// 求x^n%mod
// Verified!
LL powMod(LL x,LL n,LL mod)
{
LL res=;
while(n>)
{
if(n&) res=res*x % mod;
x=x*x % mod;
n>>=;
}
return res;
}
LL inv(LL a,LL m)
{
return powMod(a,m-,m);
// return powMod(a,eularPhi(m)-1,m);
}
LL inv2;
void FWT_Xor(LL *A, LL len) {
if (len == ) return;
LL len2 = len >> ;
FWT_Xor(A, len2);
FWT_Xor(A + len2, len2);
for (LL i = ; i < len2; ++i) {
LL x = A[i], y = A[i + len2];
A[i] = (x + y) % MOD;
A[i + len2] = ((((x - y) % MOD) + MOD) % MOD);
}
}
void IFWT_Xor(LL *A, LL len) {
if (len == ) return;
LL len2 = len >> ;
for (LL i = ; i < len2; ++i) {
LL x = A[i], y = A[i + len2];
A[i] = ((x + y) % MOD) * inv2 % MOD;
A[i + len2] = ((((x - y) % MOD) + MOD) % MOD) * inv2 % MOD;
}
IFWT_Xor(A, len2);
IFWT_Xor(A + len2, len2);
}
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
inv2=inv(,MOD);
memset(A,,sizeof(A));
memset(B,,sizeof(B));
memset(C,,sizeof(C));
two[]=;
for(LL i=;i<;i++) two[i]=two[i-]*%MOD; LL m;
scanf("%lld",&m);
for(LL i=;i<(<<m);i++)
{
LL x;
scanf("%lld",&x);
A[bit(i)][i]=x*two[bit(i)]%MOD;
}
for(LL i=;i<(<<m);i++)
{
LL x;
scanf("%lld",&x);
B[bit(i)][i]=x;
}
for(LL i=;i<=m;i++) FWT_Xor(A[i],(<<m));
for(LL i=;i<=m;i++) FWT_Xor(B[i],(<<m));
for(LL k=;k<=m;k++)
for(LL i=k;i<=m;i++)
for(LL j=;j<(<<m);j++)
C[k][j]=(C[k][j]+A[i-k][j]*B[i][j])%MOD;
for(LL i=;i<=m;i++) IFWT_Xor(C[i],(<<m));
LL ans=,mi=;
for(LL i=;i<(<<m);i++)
{
ans=(ans+C[bit(i)][i]*mi)%MOD;
mi=mi*%MOD;
}
printf("%lld\n",ans);
return ;
}

HDU 6057 Kanade's convolution的更多相关文章

  1. HDU 6057 - Kanade's convolution | 2017 Multi-University Training Contest 3

    /* HDU 6057 - Kanade's convolution [ FWT ] | 2017 Multi-University Training Contest 3 题意: 给定两个序列 A[0 ...

  2. HDU 6057 Kanade's convolution(FWT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6057 [题目大意] 有 C[k]=∑_(i&j=k)A[i^j]*B[i|j] 求 Ans ...

  3. hdu 6057 Kanade's convolution(子集卷积)

    题解: 然后就是接下来如何fwt 也就是如何处理bit(x) - bit(y) = bit(k)这个条件. 其实就是子集卷积. 把bit(x)和bit(y)划分成两个集合,然后就是子集卷积的形式. 这 ...

  4. HDU 6059 - Kanade's trio | 2017 Multi-University Training Contest 3

    思路来自题解(看着题解和标程瞎吉尔比划了半天) /* HDU 6059 - Kanade's trio [ 字典树 ]  |  2017 Multi-University Training Conte ...

  5. HDU 6058 - Kanade's sum | 2017 Multi-University Training Contest 3

    /* HDU 6058 - Kanade's sum [ 思维,链表 ] | 2017 Multi-University Training Contest 3 题意: 给出排列 a[N],求所有区间的 ...

  6. hdu 6058 Kanade's sum(模拟链表)

    Kanade's sum Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  7. hdu 6059 Kanade's trio(字典树)

    Kanade's trio Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)T ...

  8. HDU 6058 Kanade's sum 二分,链表

    Kanade's sum Problem Description Give you an array A[1..n]of length n. Let f(l,r,k) be the k-th larg ...

  9. HDU - 6058 Kanade's sum

    Bryce1010模板 http://acm.hdu.edu.cn/showproblem.php?pid=6058 /* 思路是:找出每个x为第k大的区间个数有多少 用pos[i]保存当前x的位置, ...

随机推荐

  1. 【原创】centos6创建sftp账号,并设置权限和目录

    网上找了个教程,折腾好长时间都不行,最后往死里整,终于弄好了,记录一下. 系统环境:Centos6.9 64bit 完美解决: Permission denied (publickey,gssapi- ...

  2. ZJOI2018酱油记

    ZJOI2018酱油记 前言 作为\(HN\)高一蒟蒻选手,毕竟去了趟\(ZJOI\)玩泥巴 不写点游记还是不太好吧. 今天来补一补. Day0 星期天,中午,我们一群人滚到了学校门口 然后集合,滚去 ...

  3. BZOJ 1013 | 一份写了一堆注释的高斯消元题解

    题意 给出\(n\)维直角坐标系中\(n + 1\)个点的坐标,它们都在一个\(n\)维球面上,求球心坐标. 题解 设球面上某两个点坐标为\((a_1, a_2, ... a_n)\)和\((b_1, ...

  4. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  5. React-Router 动画 Animation

    React-Router动画实际上和React动画没什么区别,都是使用 'react-addons-css-transition-group' 这个组件:但是,和普通的 React-Router 的 ...

  6. mysql source导入多个sql文件

    mysql>use dbtest; mysql>set names utf8; mysql>source D:/mysql/all.sql; 通过source命令导入多个文件,可以新 ...

  7. MySQL基本了解与使用

    MySQL的相关概念介绍 MySQL 为关系型数据库(Relational Database Management System), 这种所谓的"关系型"可以理解为"表格 ...

  8. JavaWeb中的多数据源开发

    从我们接触Javaweb开始,ssh框架或者ssm等或许是惊叹于框架的强大之处还是自身的迷茫,一直没有注意到一个问题就是:在我的项目中在spring中所配置的数据源都是指向单一数据库,都是单数据源,一 ...

  9. IEEE 754浮点数表示标准

    二进制数的科学计数法 C++中使用的浮点数包括采用的是IEEE标准下的浮点数表示方法.我们知道在数学中可以将任何十进制的数写成以10为底的科学计数法的形式,如下 其中显而易见,因为如果a比10大或者比 ...

  10. 【Asp.net入门16】第一个ASP.NET 应用程序-总结

    本章创建了一个新的ASP.NET项目,并用它创建了一个简单的数据输入应用程序,向你初步介绍 了ASP.NET平台.本章省略了许多重要的功能,只为向你说明ASP.NET应用程序所执行的核心操作—— 使用 ...