coursera课程Text Retrieval and Search Engines之Week 2 Overview
Week 2 OverviewHelp Center
Week 2
On this page:
- Instructional Activities
- Time
- Goals and Objectives
- Key Phrases/Concepts
- Guiding Questions
- Readings and Resources
- Video Lectures
- Tips for Success
- Getting and Giving Help
Instructional Activities
Below is a list of the activities and assignments available to you this week. See the How to Pass the Class page to know which assignments pertain to the badge or badges you are pursuing. Click on the name of each activity for more detailed instructions.
| Relevant Badges | Activity | Due Date* | Estimated Time Required |
|---|---|---|---|
| Week 2 Video Lectures | Sunday, April 5 (Suggested) |
3 hours | |
![]() ![]() |
Programming Assignment Part 1 | Sunday, April 5 | 2-3 hours |
![]() ![]() |
Week 2 Quiz | Sunday, April 19 | ~0.5 hours |
* All deadlines are at 11:55 PM Central Time (time zone conversion) unless otherwise noted.
Time
This module will last 7 days and should take approximately 6 hours of dedicated time to complete, with its readings and assignments.
Goals and Objectives
After you actively engage in the learning experiences in this module, you should be able to:
- Explain what an inverted index is and how to construct it for a large set of text documents that do not fit into the memory.
- Explain how variable-length encoding can be used to compress integers and how unary coding and gamma-coding work.
- Explain how scoring of documents in response to a query can be done quickly by using an inverted index.
- Explain what Zipf’s law is.
- Explain what the Cranfield evaluation methodology is and how it works for evaluating a text retrieval system.
- Explain how to evaluate a set of retrieved documents and how to compute precision, recall, and F1.
- Explain how to evaluate a ranked list of documents.
- Explain how to compute and plot a precision-recall curve.
- Explain how to compute average precision and mean average precision (MAP).
- Explain how to evaluate a ranked list with multi-level relevance judgments.
- Explain how to compute normalized discounted cumulative gain.
- Explain why it is important to perform a statistical significance test.
Key Phrases/Concepts
Keep your eyes open for the following key terms or phrases as you complete the readings and interact with the lectures. These topics will help you better understand the content in this module.
- Inverted index; postings
- Binary coding; unary coding; gamma-coding; d-gap
- Zipf’s law
- Cranfield evaluation methodology
- Precision; recall
- Average precision; mean average precision (MAP); geometric mean average precision (gMAP)
- Reciprocal rank; mean reciprocal rank
- F-measure
- Normalized discounted cumulative gain (nDCG)
- Statistical significance test
Guiding Questions
Develop your answers to the following guiding questions while completing the readings and working on assignments throughout the week.
- What is the typical architecture of a text retrieval system?
- What is an inverted index?
- Why is it desirable for compressing an inverted index?
- How can we create an inverted index when the collection of documents does not fit into the memory?
- How can we leverage an inverted index to score documents quickly?
- Why is evaluation so critical for research and application development in text retrieval?
- How does Cranfield evaluation methodology work?
- How do we evaluate a set of retrieved documents?
- How do you compute precision, recall, and F1?
- How do we evaluate a ranked list of search results?
- How do you compute average precision? How do you compute mean average precision (MAP) and geometric mean average precision (gMAP)?
- What is mean reciprocal rank?
- Why is MAP more appropriate than precision at k documents when comparing two retrieval methods?
- Why is precision at k documents more meaningful than average precision from a user’s perspective?
- How can we evaluate a ranked list of search results using multi-level relevance judgments?
- How do you compute normalized discounted cumulative gain (nDCG)?
- Why is normalization necessary in nDCG? Does MAP need a similar normalization?
- Why is it important to perform a statistical significance test when we compare the retrieval accuracies of two search engine systems?
Readings and Resources
The following readings are optional:
- Mark Sanderson. "Test Collection Based Evaluation of Information Retrieval Systems." Foundations and Trends in Information Retrieval 4(4): 247-375 (2010).
- Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images, Second Edition. Morgan Kaufmann, 1999.
Video Lectures
| Video Lecture | Lecture Notes | Transcript | Video Download | SRT Caption File | Forum |
|---|---|---|---|---|---|
2.1 Implementation of TR Systems(00:21:27) |
(28.3 MB) |
||||
2.2 System Implementation: Inverted Index Construction(00:18:21) |
(24.4 MB) |
||||
2.3 System Implementation: Fast Search(00:17:11) |
(23.0 MB) |
||||
2.4 Evaluation of TR Systems(00:10:10) |
(14.1 MB) |
||||
2.5 Evaluation of TR Systems: Basic Measures(00:12:54) |
(17.3 MB) |
||||
2.6 Evaluation of TR Systems: Evaluating a Ranked List - Part 1(00:15:51) |
(20.5 MB) |
||||
2.6 Evaluation of TR Systems: Evaluating a Ranked List - Part 2(00:10:01) |
(13.8 MB) |
||||
2.7 Evaluation of TR Systems: Multi-Level Judgements(00:10:48) |
(14.3 MB) |
||||
2.8 Evaluation of TR Systems: Practical Issues(00:15:14) |
(20.8 MB) |
Tips for Success
To do well this week, I recommend that you do the following:
- Review the video lectures a number of times to gain a solid understanding of the key questions and concepts introduced this week.
- When possible, provide tips and suggestions to your peers in this class. As a learning community, we can help each other learn and grow. One way of doing this is by helping to address the questions that your peers pose. By engaging with each other, we’ll all learn better.
- It’s always a good idea to refer to the video lectures and chapter readings we've read during this week and reference them in your responses. When appropriate, critique the information presented.
- Take notes while you read the materials and watch the lectures for this week. By taking notes, you are interacting with the material and will find that it is easier to remember and to understand. With your notes, you’ll also find that it’s easier to complete your assignments. So, go ahead, do yourself a favor; take some notes!
Getting and Giving Help
You can get/give help via the following means:
- Use the Learner Help Center to find information regarding specific technical problems. For example, technical problems would include error messages, difficulty submitting assignments, or problems with video playback. You can access the Help Center by clicking on theHelp Center link at the top right of any course page. If you cannot find an answer in the documentation, you can also report your problem to the Coursera staff by clicking on the Contact Us! link available on each topic's page within the Learner Help Center.
- Use the Content Issues forum to report errors in lecture video content, assignment questions and answers, assignment grading, text and links on course pages, or the content of other course materials. University of Illinois staff and Community TAs will monitor this forum and respond to issues.
As a reminder, the instructor is not able to answer emails sent directly to his account. Rather, all questions should be reported as described above.
from: https://class.coursera.org/textretrieval-001/wiki/Week2Overview
coursera课程Text Retrieval and Search Engines之Week 2 Overview的更多相关文章
- coursera课程Text Retrieval and Search Engines之Week 1 Overview
Week 1 OverviewHelp Center Week 1 On this page: Instructional Activities Time Goals and Objectives K ...
- coursera课程Text Retrieval and Search Engines之Week 3 Overview
Week 3 OverviewHelp Center Week 3 On this page: Instructional Activities Time Goals and Objectives K ...
- coursera课程Text Retrieval and Search Engines之Week 4 Overview
Week 4 OverviewHelp Center Week 4 On this page: Instructional Activities Time Goals and Objectives K ...
- 【Python学习笔记】Coursera课程《Using Databases with Python》 密歇根大学 Charles Severance——Week4 Many-to-Many Relationships in SQL课堂笔记
Coursera课程<Using Databases with Python> 密歇根大学 Week4 Many-to-Many Relationships in SQL 15.8 Man ...
- 【Python学习笔记】Coursera课程《Using Python to Access Web Data》 密歇根大学 Charles Severance——Week6 JSON and the REST Architecture课堂笔记
Coursera课程<Using Python to Access Web Data> 密歇根大学 Week6 JSON and the REST Architecture 13.5 Ja ...
- 【Python学习笔记】Coursera课程《Using Python to Access Web Data 》 密歇根大学 Charles Severance——Week2 Regular Expressions课堂笔记
Coursera课程<Using Python to Access Web Data > 密歇根大学 Charles Severance Week2 Regular Expressions ...
- Coursera课程下载和存档计划[转载]
上周三收到Coursera平台的群发邮件,大意是Coursera将在6月30号彻底关闭旧的课程平台,全面升级到新的课程平台上,一些旧的课程资源(课程视频.课程资料)将不再保存,如果你之前学习过相关的课 ...
- 【网页开发学习】Coursera课程《面向 Web 开发者的 HTML、CSS 与 Javascript》Week1课堂笔记
Coursera课程<面向 Web 开发者的 HTML.CSS 与 Javascript> Johns Hopkins University Yaakov Chaikin Week1 In ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
随机推荐
- 【POJ】2449.Remmarguts' Date(K短路 n log n + k log k + m算法,非A*,论文算法)
题解 (搬运一个原来博客的论文题) 抱着板题的心情去,结果有大坑 就是S == T的时候也一定要走,++K 我发现按照论文写得\(O(n \log n + m + k \ log k)\)算法没有玄学 ...
- 洛谷 P3071 [USACO13JAN]座位Seating-线段树区间合并(判断找,只需要最大前缀和最大后缀)+分治+贪心
P3071 [USACO13JAN]座位Seating 题目描述 To earn some extra money, the cows have opened a restaurant in thei ...
- RTSP 资料
分享两个不错的播客. http://blog.csdn.net/u010425035/article/details/10410851 http://blog.csdn.net/xiaoyafang1 ...
- Python 中的函数
学了 Python 中的数据类型,语句,接下来就来说一下 Python 中的函数,函数是结构化编程的核心.我们使用函数可以增加程序的可读性.自定义函数时使用关键字def 函数由多条语句组成.在定义函数 ...
- 把eclipse写好的web项目导入idea 部署到Tomcat
主要分为项目配置和tomcat配置两大步骤. 一.项目配置 打开idea,选择导入项 选择将要打开的项目路径后,继续选择项目的原本类型(后续引导设置会根据原本的项目类型更新成idea的项目),此例中选 ...
- python issubclass 和 isinstance函数
Python issubclass() 函数 issubclass() 方法用于判断参数 class 是否是类型参数 classinfo 的子类. 语法: issubclass(class, clas ...
- Python进阶篇:Python简单爬虫
目录 前言 要解决的问题 设计方案 代码说明 小结 前言 前一段一直在打基础,已经学习了变量,流程控制,循环,函数这几块的知识点,就想通过写写小程序来实践一下,来加深知识点的记忆和理解.首先考虑的就是 ...
- apt-get出现无法定位安装包问题解决
这个问题出现在sources.list上 编辑/etc/apt/sources.list下的文件 找到检查你的存储库是否正确 你可以在以下页面找到不同版本 Kali Linux 的存储库:http:/ ...
- Loj10167 HDU2089 不要62
题目描述 杭州人称那些傻乎乎粘嗒嗒的人为 626262(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士 ...
- JavaScript和JSP的区别?
名字: JS:JavaScript JSP:Java Server Pages 执行过程:JSP先翻译,翻译成Servlet执行 如: test.jsp 要变成 test_jsp.java 然后编译成 ...




2.1 Implementation of TR Systems