Description

幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。 我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?

Input

第一行只有两个整数n,m,保证有2≤n≤300,1≤m≤n(n-1)/2。其中n代表总人数,m代表好朋友的对数。文件第二行有n个整数,第i个整数代表第i个小朋友的意愿,当它为1时表示同意睡觉,当它为0时表示反对睡觉。接下来文件还有m行,每行有两个整数i,j。表示i,j是一对好朋友,我们保证任何两对i,j不会重复。

Output

只需要输出一个整数,即可能的最小冲突数。

Sample Input

3 3

1 0 0

1 2

1 3

3 2

Sample Output

1

HINT

在第一个例子中,所有小朋友都投赞成票就能得到最优解

Solution

源点向所有赞成睡觉的人连边,容量为 \(1\) ,不赞成睡觉的向汇点连边,容量为 \(1\)

好朋友之间连双向边

那么最小割代表的就是用最小的代价完成投票

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=300+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,m,e=1,beg[MAXN],cur[MAXN],level[MAXN],vis[MAXN],clk,s,t,to[MAXM<<1],nex[MAXM<<1],cap[MAXM<<1];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(cap[i],maxflow));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);read(m);
s=n+1,t=s+1;
for(register int i=1;i<=n;++i)
{
int opt;read(opt);
if(opt)insert(s,i,1);
else insert(i,t,1);
}
for(register int i=1;i<=m;++i)
{
int u,v;read(u);read(v);
insert(u,v,1);insert(v,u,1);
}
write(Dinic(),'\n');
return 0;
}

【刷题】BZOJ 1934 [Shoi2007]Vote 善意的投票的更多相关文章

  1. BZOJ 1934: [Shoi2007]Vote 善意的投票 最小割

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  2. 最小投票BZOJ 1934([Shoi2007]Vote 善意的投票-最小割)

    上班之余抽点时间出来写写博文,希望对新接触的朋友有帮助.今天在这里和大家一起学习一下最小投票 1934: [Shoi2007]Vote 好心的投票 Time Limit: 1 Sec Memory L ...

  3. ●BZOJ 1934 [Shoi2007]Vote 善意的投票

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1934 题解: 题目有点迷. S向为1的点连边,为0的点向T连边,在有关系的两个点之间连双向边 ...

  4. BZOJ 1934 [Shoi2007]Vote 善意的投票(最小割)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1934 [题目大意] 每个人对于投票都有自己原来的观点:1或者0, 他可以违背自己原来的 ...

  5. bzoj 1934: [Shoi2007]Vote 善意的投票

    #include<cstdio> #include<iostream> #define M 100000 #include<cstring> using names ...

  6. bzoj 1934: [Shoi2007]Vote 善意的投票 (最小割)

    原来是赞同的连源,原来是反对的连汇,然后是朋友的就连在一起,这样最小割就是割掉违背和谐的吧 type arr=record toward,next,cap:longint; end; const ma ...

  7. 1934: [Shoi2007]Vote 善意的投票

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1174  Solved: 723[Submit][S ...

  8. 【BZOJ】1934: [Shoi2007]Vote 善意的投票(网络流/-二分图匹配)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1934 一开始我想到了这是求最小割,但是我认为这题二分图可做,将1的放在左边,0的放在右边,然后朋友连 ...

  9. 1934: [Shoi2007]Vote 善意的投票 - BZOJ

    Description幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以 ...

随机推荐

  1. c语言数字图像处理(八):噪声模型及均值滤波器

    图像退化/复原过程模型 高斯噪声 PDF(概率密度函数) 生成高斯随机数序列 算法可参考<http://www.doc.ic.ac.uk/~wl/papers/07/csur07dt.pdf&g ...

  2. Controller层@PathVariable使用

    @PathVariable 映射 URL 绑定的占位符 带占位符的 URL 是 Spring3.0 新增的功能,该功能在SpringMVC 向 REST 目标挺进发展过程中具有里程碑的意义通过 @Pa ...

  3. QRCode 二维码

    一.生成二维码 1.二维码就是绘制成黑白相间的图片,所谓的黑白相间就是代表0和1 ,二维码大约可以容纳500多个中文,所以用途之广显而易见. 所需的jar包  http://pan.baidu.com ...

  4. 如何掌握 Kubernetes ?系统学习 k8s 的大纲一份

    深度剖析 Kubernetes 深度剖析 k8s 如何学习 Kubernetes ?如何入门 Kubernetes? 为了帮帮初学者,2018 年 InfoQ 旗下(就是你知道的那个 InfoQ 哇) ...

  5. [转载]GB2312简体中文编码表

    编码表源地址:http://www.knowsky.com/resource/gb2312tbl.htm编码在线查询:http://www.qqxiuzi.cn/bianma/zifuji.phpGB ...

  6. 10.openldap备份与恢复

    备份方式 一.使用slapcat指令备份 使用slapcat备份后的数据 经过相关无用条目处理,即可实现数据上的条目备份 备份指令如下 #备份 #slapcat -v -l openldap-back ...

  7. 第九次psp例行报告

    本周psp 本周进度条 代码累积折线图 博文字数累积折线图 饼状图

  8. second scrum meeting - 151026

    摘要:这一周的工作其实进行的并没有很迅速~不过我们团队的每个人都在慢慢进行自己的工作,并且我们也完成了大致的页面设计,开发了主页面的框架,并且我们也会开始着手学习服务器的操作,还有更加完善主页面的框架 ...

  9. OO第四次作业-对前三次作业总结

    第一次作业由于直接没怎么学过java,全靠一星期速成,前几天看了java的语法,但是因为光看没有打代码,学习效果并不是特别好.由面向过程转向面向对象,不是特别清楚该怎么办,虽然写的是两个类,但实际上是 ...

  10. 第二阶段Sprint2

    昨天:讨论冲刺阶段,目标,任务认领 今天:查看资料,开始视频录制部分的代码实现 遇到的问题:不能暂停后继续录制,只能直接结束